整式的乘法教案(通用20篇)

格式:DOC 上传日期:2023-11-25 21:03:10
整式的乘法教案(通用20篇)
时间:2023-11-25 21:03:10     小编:MJ笔神

教案可以提供教学过程中所需要的教学资源和教学方法的选择。教案的编写不仅要注重知识的讲解和传授,还要培养学生的学习兴趣和学习方法,激发学生的学习动力。以下是小编为大家收集的优秀教案范文,供大家参考借鉴。

整式的乘法教案篇一

知识技能:初步学会用乘法口诀求商。

过程与方法:经历探索除法计算方法的过程,了解用乘法口诀想商的思路。

情感态度:培养学生的动手操作能力和初步的抽象能力,养成良好的学习习惯。

重点:掌握用2~6的乘法口诀求商的方法

难点:用乘法口诀想商的思路

一、创设情境,引入新知

出示例1放大图,讲述猴妈妈给小猴分桃的故事。二、自主探索,学习新知

看图,思考问题:小猴摘了几个桃子?猴妈妈准备分给几只小猴?

二、小组合作,探究方法。

(1)各小组动手分一分,并说说分的过程。

(2)小组合作,交流方法。

我们通过分一分知道了可以分给4只小猴。如果我们不动手分,那该怎样想呢?

学生交流想法。

揭示课题,板书课题:用2~6的乘法口诀求商。

12÷3的商是几?你是怎样算的?

学生汇报并说明解题思路。

小结。

三、拓展应用,加深理解

引导学生完成第“做一做”。

(1)要求学生利用口诀独立解决,并想想这些题目有什么特点。教师巡视指导。

(2)交流汇报。

引导学生完成练习

学生认真观察图,说说图意。然后独立完成。

四、课堂总结。

今天的学习你有什么收获?

必做

1填一填

(1)10个苹果平均分给5个小朋友,每个小朋友分几个?

(2)12根小棒,每3根围一个三角形,能围几个三角形?

选做

2想一想,写2个除法算式

(1)三五十五

整式的乘法教案篇二

1.探索并了解正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),并会运用它们进行计算。

2.探索并了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式的乘法运算。

3.会由整式的乘法推导乘法公式,并能运用公式进行简单计算。

4.理解因式分解的意义及其与整式的乘法之间的关系,从中体会事物之间可以相互转化的辩证思想。

5.会用提公因式法、公式法、分组法、十字相乘法进行因式分解(指数是正整数)。

6.让学生主动参与到一些探索过程中去逐步形成独立思考,主动探索的习惯,提高自己数学学习兴趣。

整式的乘法教案篇三

(1)要求出总产量应知道的条件是。

想求总产量应用题的数量关系是:

单产量×数量=总产量。

解括号中应填“单产量和数量”。

(2)如果知道衣服的价钱和买的件数,可以求出()。

想衣服的价钱就是单价;买衣服的件数也就是衣服数量。包含单价和数。

量的应用题的数量关系是:

单价×数量=总价。

解括号中应填“总价”。

【2】判断:下面的说法如果错了请改正。

(1)知道工效和时间就可以求出路程。

想工效×时间=工作总量速度×时间=路程。

解错了,应改正为:知道工效和时间就可以求出工作总量。或者是知道速度和时间就可以求出路程。

(2)“学校要购买3台录音机,每台需要450元,一共要用多少钱?”这道题目是已知单产量和数量,求总价。

想每件商品的价钱叫做单价。单价×数量=总价。

解错了,应改正为:这道题目是已知单价和数量,求总价。

(3)已知每小时走的路程和走了几小时,可以用乘法求出一共走的路程。

想每小时走的路程表示速度;走了几小时是指时间。速度×时间=路程。

所以用乘法求出一共走的路程是正确的。

解本题的说法正确。

(4)“修一条水渠,每天修20米,10天一共修多少米?”这道应用题的数量关系是工效×时间=工作总量。

想一天完成产品(任务)的多少叫做工效,因此“每天修20米”是工效;所用的几天叫做时间,所以“10天”是时间;一共完成的产品(任务)数量叫做工作总量,故“一共修多少米”是工作总量。可见,应用题的`数量关系是工效×时间=工作总量。

解本题的说法是正确的。

【3】编一道已知单价和数量求总价的应用题。

想单价×数量=总价。单价和数量要作为题目的已知条件,总价作为问题。

【4】用“8小时”编一道求工作总量的应用题。

想工效×时间=工作总量。“8小时”是时间,因此还要确定另一个已知条件“工效”。

解工人叔叔每小时能做5盒粉笔,1天工作8小时,工人叔叔一天能做多少盒粉笔?

【5】编一道求路程的应用题。

想速度×时间=路程。要求路程,需要速度和时间两个条件。

解高速列车每小时能行驶300千米,6小时一共能行驶多少千米?

【6】养鸡场每天出产鲜蛋400千克,7天一共出产鲜蛋多少千克?

(1)写出这道应用题的数量关系。

想题目求“一共生产鲜蛋多少千克?”,这是求总产量。

解单产量×数量=总产量。

(2)列式解答这道题目。

想每天出产的鲜蛋数量是单产量,即单产量是400;产蛋的天数是7天,即数量是7。

解400×7=2800(千克)。

答:7天一共产鲜蛋2800千克。

想求甲乙两地间相距多少米,实际上就是求甲地到乙地的路程。题目已经告知某人的骑车速度是每分钟300米,且所用的时间是12分钟,于是根据速度×时间=路程这一数量关系便可列式解题。

解300×12=3600(米)。

答:甲乙两地间相距3600米。

【8】先补充条件,再列式解答。

王伟每天写20个大字,__,一共写了多少个大字?

想题目求的是一共写了多少个大字。如果把写字看作是王伟的工作,那么,很容易知道题目实际上是求工作总量。其数量关系是工效×时间=工作总量。由此可知,这道应用题需要工效和时间两个条件,而工效是每天写20个大字,因此缺少的条件是时间。可补充为:他写了15天。

解补充的条件可以是:他写了15天。这时,可解答为:20×15=300(个)。

答:他一共写了300个大字。

想求卡车6分钟行多少米,也就是求路程。由速度×时间=路程可知,解答这道应用题需要两个条件:速度和时间。时间是6分钟,速度却没有直接告诉,因此先要求出卡车的速度。

解分步列式:

300+300=600(米)卡车每分钟行的路程。

600×6=3600(米)卡车6分钟行的路程。

综合列式:(300+300)×6=3600(米)。

答:卡车6分钟行3600米。

想要求做操的同学一共是多少,应知道两个已知条件:同学们站的行数和每行的人数。这两个条件只能根据小林站的位置推算出来。

的行数加起来便得到全体学生站的行数:6+12+1=19(行)。

再推算每行人数:因为从前面数起他是第8个,则他的前面有7个小;同时从后面数起他又是第14个,则他的后面有13个。把前后人数加起来再加上小林便得到每行人数:7+13+1=21(人)。由于每行人数同样多,因此可以算出做操的同学一共是多少。

解(7+13+1)×(6+12+1)=21×19=399(人)。

答:做操的同学一共是399人。

整式的乘法教案篇四

教学重点和难点。

重点:单项式的定义;单项式的系数和次数?

课堂教学过程设计。

一、提出问题,引入“单项式”概念。

1、青藏铁路线上,在格尔木到拉萨之间有一段冻土地段,列车在冻土地段的行使速度能够到达100千米/时,在非冻土地段能够到达120千米/时,请根据这些数据回答问题:列车在冻土地段行驶时:

(1)2小时能行驶多少千米?

(2)3小时呢?

(3)t小时呢?

答案:(1)100×2=200(2)100×3=300(3)v×t=vt。

2、用内含字母的式子填空。

(1)若边长为a的正方形的周长为_____,面积为_____.

(2)铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的单价是________元.

(3)一辆汽车的速度是v千米/时,它t小时行驶的路程是______千米。

(4)数n的相反数是_______.

答案:(1)4a,a2;(2)ab;(3)-n?

2、提出问题:以上几个代数式有什么共同特征。

二、新知识讲授。

1、定义:由数或字母的乘积组成的式子叫做单项式。

单独一个数或一个字母也叫单项式.

练指出下列代数式中,哪些是单项式:

2xy,-4x,a+b,,,m,-,-ab?

此练习让学生回答,透过此练习,一方面巩固刚刚学过的单项式定义,另一方面是让学生逐步学习如何应用定义去决定“是”或“不是”

答案:2xy,-4x,,,m,-,-ab。

在刚才的练习中,单项式2xy,-4x,,-,m,-ab的数字因数分别是几。

定义:单项式中的数字因数,叫做单项式的系数?

练指出以下单项式的系数:

3x2,-x2y2z,a2b,-2.15ab3,-m3,0.12h.

本练习答案:3,-,1,-2?15,-1,0?12?

定义:一个单项式中,所有字母的指数的和,叫做这个单页式的次数练指出下列单项式的次数:

3x2,-x2y2z,a2b,-2.15ab3,-m3,0.12h.

本练习答案:2,5,3,4,3?,1。

三、进一步巩固新知识。

1、p55例1。

2、p56练习第1题填表。

学生填,对答案?

四、小结。

1?这天这节课我们学习了哪一类代数式(单项式)。

关于单项式,我们又学习了什么(定义、系数、次数)。

五、作业。

p59习题2.1的第1题。

2练习册。

整式的乘法教案篇五

这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸.这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础,整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

在整个这一部分的内容教学中,难点与易错点主要是:

1、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

2、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

3、注意实际问题主要是图形的面积问题的正确解决。

注重难点与学习方法。

1、关注对教学难点的教学。

新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。

2、关注对学生学习方法的指导。

建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。

3、教育的根本目的在于促进每一个学生的发展,这也是数学教育的根本目的,因此教师在教学设计时,结合学生实际,有效整合教材,精选例习题,分层施教。本单元教学是以习题训练为主的,教学时注意选择了有层次的例题和练习,采用“兵教兵”的方法,组织学生开展合作学习。在探究问题的设计上也是由浅入深,目的就在于通过引导学生对问题的解决,能熟练掌握基础知识,灵活运用基本方法,提高分析问题和解决问题的能力。

4、让学生在“做”中学。

依据教学内容及教学要求,本节课通过拼图游戏,让学生动手操作,在活动中既复习了单项式与多项式相乘,又引出多项式相乘的运算。由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。

5、加强反思,注重对学生数学思想方法的渗透。

美国认知心理学家加涅指出,学习者学会了如何学习、如何记忆、如何获得更多的学习思维和分析思维,将会使它们变得越来越自主学习。所以,在教学中非常注重引导学生进行反思,在探究问题的过程中引导学生思考运用了哪些数学思想,例如本课中将多项式乘法转化为单项式乘以多项式的“转化”的思想,运用乘法分配律时的“整体”思想,拼图列式中运用的“数形结合”思想等,可以帮助学生从本质上理解所学知识,并提高解决问题的能力,真正使教学过程起到“授之以渔”的作用。

一、内容分析。

整式的乘法是在学生学习了同底数幂的乘法、幂的乘方、积的乘方等知识之后安排的有关整式的运算学习。幂的有关运算法则的学习主要是幂的意义的基础之上来学习的,这一部分内容主要法则依据是乘法的交换律及结合律,知识点相对较少且难度不大,在这节课的学习中通常用“四环节”教学模式来安排每一节课的学习。

第一环节:自学质疑。

让学生自学课本相关内容,并提出相关问题:

(1)认真学习课本中探究,并对探究中问题认真填空,且要说明道理;。

(2)领会问题中作题依据;。

(3)归纳出你自学中体现出的乘法法则并会用字母表示,

(4)记下你在自学中遇到的问题以及在法则中的不解之处,以备讨论。

第二环节:合作释疑。

先以小组为单位进行组内讨论,对于每个组员出现的问题进行交流,解除疑惑,组内不能解决的,组长作好记录,以进行全班讨论。

而对于讨论仍然不能解决的问题老师要作好班内讲解。

第三环节:展示评价。

以小组为单位派一个中下等水平的学生进行展示。可口头也可黑板上板演,然后组与组间交换进行评价,查找问题,对出现的问题进行全班纠正。

第四环节:巩固深化。

由学生分组板演课后相关练习,并进行组间互评。若学生掌握较好,则适时给出一些较复杂的问题如把和差与乘法的结合的计算让学有余力的学生进行练习,从而提高其运算能力,然后布置难易两组作业,一组必作,一组选作。

这部分内容是在学习了有理数的四则混合运算、幂的定义、合并同类项、去括号、整式的加减、幂的有关运算法则内容的基础上进行的,它是前面知识的延伸,具有承前启后的作用,承前是继整式的加减之后而学习,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习以及进行整式的加、减、乘、除综合运算的基础。整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,有乘方的要先算乘方,后算乘法,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容是第一部分的延伸,其依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定,还要注意分配律的复习。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。混合运算是一个难点,在混合运算中注意括号运算,不要漏括号。

在这几部分的学习中,从学生课堂表现与作业完成情况看,效果还不错,学生整体对法则的掌握较好,但在处理一些涉及符号以及乘除与加减同时出现的一些问题时,出现的错误较多,另外合并同类项与幂的运算法则在运用中也出现混淆的现象。

在整个这一部分的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。三、混合运算中符号及各种运算法则混淆不清,运用还不够熟练。

对这些问题的解决除了加强基本法则运用之外,还应对于综合题目多加练习,以达到巩固提高的目的。

整式的乘法教案篇六

1、素材的选取富有童趣。

教材以“看杂技”为主要线索,展现了“自行车表演”、“晃板与顶碗表演”等学生喜闻乐见的情景,能吸引学生投入到有趣的学习中。

2、口诀的设计与编排遵循儿童的认知规律。

本单元口诀的编排很有特色,主要体现在口诀句数的编排上。由于传统的“小九九”2、3、4的乘法口诀句数太少,不利于学生探索口诀的编排规律。而“大九九”则句数太多,对于刚刚接触乘法口诀的学生来说,记忆起来有困难。所以本单元采取折中的方法,把大九九和小九九的优点结合起来编排。同时,把5的乘法口诀作为学习口诀的开始,便于学生发现规律,掌握口诀的编制方法。这是乘法口诀教学的一个创新。

3、以儿歌作为编制口诀的载体,降低了口诀编制的难度。

以琅琅上口的儿歌作为编制口诀的载体是本单元乘法口诀编写的又一特点。儿歌是低年级学生接触最多而且最喜欢的语言表达形式,具有简短精练、朗朗上口等特点。本册乘法口诀部分的编写思路就是将累加所得的数编成儿歌,然后将儿歌进一步简化编成乘法口诀,让学生经历轻松愉快的口诀编制过程,同时实现学科之间的整合。

1、在具体情境中,学习1―5的乘法口诀,进一步理解乘法的意义。

2、会用口诀解决乘法问题,在探索口诀记忆方法的过程中,形成初步的合情推理能力。

3、形成初步的应用意识,体会数学与生活的联系。

:5的乘法口诀。

:3、4的乘法口诀。

1、 口诀的编制要建立在解决问题和理解乘法意义的基础上。

2、注意加强直观教学。

3、引导学生用探索的方式学习乘法口诀。

4、理解先编儿歌再编口诀的编写意图,充分发挥儿歌在编制口诀中的作用。

5、评价方式要多样。

整式的乘法教案篇七

2、内容解析。

同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础。

同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。

基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。

1、目标。

(1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。

(2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。

2、目标解析。

达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的作用,能体会到数式通性在推到结论的过程中的重要作用。

在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解。教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质。

本节课的教学难点是:同底数幂的运算性质的理解与推导。

回顾与思考:什么叫乘方?an表示的意义是什么?其中a、n、an分别叫什么?

师生活动:教师提出复习问题,学生主动思考并回答问题,并尝试用学过的知识解决问题。

设计意图:从实际问题导入,让学生动手试一试,主动探索,在自己。

的实践中感受学习同底数幂的乘法的必要性,并通过有步骤、有依据的计算,为探索同底数幂的乘法的运算性质做好知识和方法的铺垫,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习。

问题2根据乘方的意义填空:

25×22=()×()=_____________=2()a3×a2=()×()=______________=a()5m×5n=()×()=______________=5()。

(1)探一探观察几个式子左右两边底数、指数有什么变化?

(2)说一说根据上面式子的计算结果,你能发现有什么规律吗?小。

组交流一下想法。

(3)猜一猜am×an=?(m、n是正整数)。

师生活动:学生独立思考,然后小组交流思考结果。

设计意图:从引例到“推一推”、“说一说”、“猜一猜”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步又有层次地进行概括抽象的过程。在这一过程中,要留给学生探索与交流的空间,让学生在自己的实践中获得运算法则。

问题3你能将你的猜想推导出来吗?

am·an=(a·a·﹒﹒﹒·a)·(a·a·﹒﹒﹒·a)——乘方的意义。

=a·a·﹒﹒﹒·a——乘法结合律。

=am+n——乘方的意义。

师生活动:教师提出问题,学生独立思考并写出推导过程,教师用多媒体展示推导过程。

设计意图:通过推导得出同底数幂的乘法的运算性质,让学生认识并体验数式通性,体会由具体到抽象的数学思想方法。

追问1:通过上面的探索与推导,你能用文字语言概括同底数幂乘。

法的运算性质吗?

师生活动:教师提出问题学生尝试用文字语言概括同底数幂乘法的运。

算性质:同底数幂相乘,底数不变,指数相加。

练习1:计算题(结果写成幂的形式)。

1)103×104=。

2)(—7)3·(—7)8=。

3)a·a3=。

4)(a—b)2·(a—b)=。

5)a·a3·a5=。

师生活动:学生独立完成,小组合作交流答案。最后教师总结:在同底数幂的乘法运算中,底数可以是数、字母或式子。

设计意图:让学生通过练习,领会同底数幂乘法的运算性质。并体会底数的变化,可以是数、字母或式子。

师生活动:教师提出问题,学生思考回答问题,并将这一性质推广到多个同底数幂相乘的情况。

设计意图:通过利用文字语言概括性质以及对性质进行推广的过程,促进学生对公式结构特征的深层理解。

练习2判断题(若错误,请在题后写出正确答案)。

1)a5·a5=2a5()。

2)b5+b5=b10()。

3)x5·x5=x25()。

4)y5·y5=2y10()。

5)m·m3=m3()。

6)n+n3=n4()。

师生活动:学生思考判断,领略“法官断案”的快乐。

设计意图:让学生熟练地运用同底数幂乘法的运算性质,领略同底数幂乘法的魅力。

教师与学生一起回顾本节课所讲内容以及注意事项。

设计意图:

必做:课本p105页第9题。

选做:课本p106页第13题。

整式的乘法教案篇八

教科书第21页例1、例2。

教师:在前面我们编出了1~3的乘法口诀,利用编口诀的经验猜一猜4的乘法口诀一定有哪个字。

学生:有4。板书:四()教师:括号里可以怎样填?

出现汽车图。

教师:你会编4的乘法口诀吗?请根据四()在小组内编一编,有困难的可以用小棒摆正方形,看1个正方形用几根小棒,2个呢……你能编几句就编几句。

教师:你们编好了吗?哪些组愿意把你们编的口诀说给大家听一听?

学生分组在黑板上写出口诀和应用这句口诀可计算的乘法算式。

学生1:我们编出了四四十六这句口诀。我想1辆车有4个车轮,4辆车就有16个车轮。用这句口诀可以算4×4=16。

教师:你们能按一定的.顺序排列这些口诀吗?根据学生的回答,课件上按顺序排列4的乘法口诀。

教师:观察这些口诀,你能发现什么?同组讨论,再交流。

教师:你能按规律去记住这些口诀吗?用2分时间,看谁记得快。学生独立记口诀。

教师:我们来对口令,看谁的口诀记得好。

师生间、生生间按顺序和随意抽的形式对口令记口诀。

教师:下面老师说乘法算式,你能说出用哪句口诀计算吗?学生:能。

教师:4×8。学生:四八三十二。

教师:8×4。学生:四八三十二。……。

整式的乘法教案篇九

整式的乘法是在学生学习了同底数幂的乘法、幂的乘方、积的乘方等知识之后安排的有关整式的运算学习。幂的有关运算法则的学习主要是幂的意义的基础之上来学习的,这一部分内容主要法则依据是乘法的交换律及结合律,知识点相对较少且难度不大,在这节课的学习中通常教学模式来安排每一节课的学习。

让学生自学课本相关内容,并提出相关问题:

(1)认真学习课本中探究,并对探究中问题认真填空,且要说明道理;

(2)领会问题中作题依据;

(3)归纳出你自学中体现出的乘法法则并会用字母表示。

(4)记下你在自学中遇到的问题以及在法则中的不解之处,以备讨论。

先以小组为单位进行组内讨论,对于每个组员出现的问题进行交流,解除疑惑,组内不能解决的,组长作好记录,以进行全班讨论。

而对于讨论仍然不能解决的问题老师要作好班内讲解。

以小组为单位派一个中下等水平的学生进行展示。可口头也可黑板上板演,然后组与组间交换进行评价,查找问题,对出现的问题进行全班纠正。

由学生分组板演课后相关练习,并进行组间互评。若学生掌握较好,则适时给出一些较复杂的问题如把和差与乘法的结合的计算让学有余力的学生进行练习,从而提高其运算能力,然后布置难易两组作业,一组必作,一组选作。

这部分内容是在学习了有理数的四则混合运算、幂的定义、合并同类项、去括号、整式的加减、幂的有关运算法则内容的基础上进行的,它是前面知识的延伸,具有承前启后的作用,承前是继整式的加减之后而学习,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习以及进行整式的加、减、乘、除综合运算的基础。整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,有乘方的要先算乘方,后算乘法,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容是第一部分的延伸,其依据是乘法分配律,要注意有乘方运算时的'运算顺序以及符号的确定,还要注意分配律的复习。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。混合运算是一个难点,在混合运算中注意括号运算,不要漏括号。

在这几部分的学习中,从学生课堂表现与作业完成情况看,效果还不错,学生整体对法则的掌握较好,但在处理一些涉及符号以及乘除与加减同时出现的一些问题时,出现的错误较多,另外合并同类项与幂的运算法则在运用中也出现混淆的现象。

在整个这一部分的内容教学中,难点与易错点主要是:

一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

三、混合运算中符号及各种运算法则混淆不清,运用还不够熟练。

对这些问题的解决除了加强基本法则运用之外,还应对于综合题目多加练习,以达到巩固提高的目的。

整式的乘法教案篇十

5a×a×a×a×a=a···利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题。

教学时发现学生很容易把一些运算的法则搞混淆。例如:进行以下计算(a)=a,a412×a=a,这就是混淆了运算的法则。出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。数学是个严谨的学科,很多同学不能取得好的成绩不是因为学不会,而是不认真、过于草率久而久之养成坏的习惯,形成错误的运算方法,以致影响后面内容的学习。所以,我认为数学课不能只是简单的传授知识,它跟重要的作用应该是使学生养成良好的习惯,培养他们分析问题解决问题的能力。在以后的教学中,应该严格、严谨的要求学生,不能小而不顾。对于发现的问题,应及时解决,趁热打铁。

数学是个连贯的体系,前面学习的好坏会直接影响以后的学习。很多同学学会了有关幂的运算,但是在作单项式成单项式和单项式乘多项式时,还是出现了很多问题。主要问题在正负号的变换,乘完后没有合并同类项,或者说是不会合并同类项。这两块内容都属于七年级学习的,可以想象当时的学习情况。基础没有打好,就会给现在的学习带来不便,也增加了老师的工作量。很多老师会根据自己的主观判断来判断学生,对一些自己认为简单的问题,想着学生会很容易的学会并掌握,然而事实并非这样。很多接受慢的同学并没有学会,而老师却不知道,这样这些学生的问题会越积越多,最后导致跟不上所学的课程。

所以我认为老师不仅要讲的好,更要能利用有效的方法去检测学生的掌握情况,这样才能步步为营。

问题要时时提醒。学生出现的问题,我们常常当时提醒后就不管了,认为学生应该记住了。但我们忽视了他们还只是十几岁的孩子,怎么可能今天一说明天就改了呢。所以,老师要不厌其烦的说,时刻提醒,让学生一点一点的记住。

精讲多练促进学习。精讲要求教师有选择的选取例题,例题要有适中的难度,针对某些易错的问题,要多举例子进行辨析解答。老师讲完后一定要让学生进行适当的练习,通过练习看学生的掌握情况和问题所在。出现的问题要当堂解决。

整式乘法公式许多人会背但不会用,或者是漏掉其中的某些项。例如:有的同学会这样运算(x+y)=x+y。不会使用具体表现在,不能把一些式子进行简单的变形,转化成满足公式的形式。没有整体的思想,不能把一个多项式作为一个整体去运算。

整式的乘法教案篇十一

这节课最为欣赏的是通过类比的方法学生自主的掌握单项式乘法法则,不足的是步子较慢,没有完成预设的内容。这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,有乘方的要先算乘方,后算乘法,积的乘方应注意复习巩固。从学生课堂表现与作业完成情况看,效果还不错,学生整体对法则的掌握较好,但在处理一些涉及符号以及乘除与加减同时出现的一些问题时,出现的错误较多,另外合并同类项与幂的运算法则在运用中也出现混淆的现象。

在整个这一部分的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。二、同时注意整体思想的渗透,作为整体的`相反数的的变形,根据指数的奇偶性来判断符号。三、混合运算中符号及各种运算法则混淆不清,运用还不够熟练。

对这些问题的解决除了加强基本法则运用之外,还应对于综合题目多加练习,以达到巩固提高的目的。

整式的乘法教案篇十二

整式的乘法是在学生学习了同底数幂的乘法、幂的乘方、积的乘方等知识之后安排的有关整式的运算学习。幂的有关运算法则的学习主要是幂的意义的基础之上来学习的,这一部分内容主要法则依据是乘法的交换律及结合律,知识点相对较少且难度不大,在这节课的学习中通常教学模式来安排每一节课的学习。

第一环节:自学质疑。

让学生自学课本相关内容,并提出相关问题:

(1)认真学习课本中探究,并对探究中问题认真填空,且要说明道理;

(2)领会问题中作题依据;

(3)归纳出你自学中体现出的乘法法则并会用字母表示。

(4)记下你在自学中遇到的问题以及在法则中的不解之处,以备讨论。

第二环节:合作释疑。

先以小组为单位进行组内讨论,对于每个组员出现的问题进行交流,解除疑惑,组内不能解决的,组长作好记录,以进行全班讨论。

而对于讨论仍然不能解决的问题老师要作好班内讲解。

第三环节:展示评价。

以小组为单位派一个中下等水平的学生进行展示。可口头也可黑板上板演,然后组与组间交换进行评价,查找问题,对出现的问题进行全班纠正。

第四环节:巩固深化。

由学生分组板演课后相关练习,并进行组间互评。若学生掌握较好,则适时给出一些较复杂的问题如把和差与乘法的结合的计算让学有余力的学生进行练习,从而提高其运算能力,然后布置难易两组作业,一组必作,一组选作。

这部分内容是在学习了有理数的四则混合运算、幂的定义、合并同类项、去括号、整式的加减、幂的有关运算法则内容的基础上进行的,它是前面知识的延伸,具有承前启后的作用,承前是继整式的加减之后而学习,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习以及进行整式的加、减、乘、除综合运算的基础。整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,有乘方的要先算乘方,后算乘法,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容是第一部分的延伸,其依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定,还要注意分配律的复习。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。混合运算是一个难点,在混合运算中注意括号运算,不要漏括号。

在这几部分的学习中,从学生课堂表现与作业完成情况看,效果还不错,学生整体对法则的掌握较好,但在处理一些涉及符号以及乘除与加减同时出现的一些问题时,出现的错误较多,另外合并同类项与幂的运算法则在运用中也出现混淆的现象。

在整个这一部分的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。混合运算中符号及各种运算法则混淆不清,运用还不够熟练。对这些问题的解决除了加强基本法则运用之外,还应对于综合题目多加练习,以达到巩固提高的目的。

整式的乘法教案篇十三

2.使学生掌握第一个因数中间有0的乘法的计算方法.。

3个盘子,6个苹果.。

一、复习。

1.口答.3×4表示几个几相加?2×5表示几个几相加?

2.第二个因数是一位数的乘法法则。

二、新课。

1.教学认识零乘任何数都等于零.。

教师:用乘法怎样算?想一想是求几个几相加?

学生回答后,教师板书:0×3二0。

教师:“0×3”表示什么呢?(3个0相加.)。

教师在黑板上板书下面两组算式:

3×4=5×6=4×3=6×5=。

3.完成“做一做”中的题目.。

4.教学例题.。

三、课堂练习。

四、作业。

让学生做练习五中的第2、3题.。

整式的乘法教案篇十四

这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸。这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

在整个这一部分的内容教学中,难点与易错点主要是:

1、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

2、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

3、注意实际问题主要是图形的面积问题的正确解决。

注重难点与学习方法。

新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。

建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。

3、教育的根本目的在于促进每一个学生的发展,这也是数学教育的根本目的,因此教师在教学设计时,结合学生实际,有效整合教材,精选例习题,分层施教。本单元教学是以习题训练为主的,教学时注意选择了有层次的例题和练习,采用“兵教兵”的方法,组织学生开展合作学习。在探究问题的设计上也是由浅入深,目的就在于通过引导学生对问题的解决,能熟练掌握基础知识,灵活运用基本方法,提高分析问题和解决问题的能力。

依据教学内容及教学要求,本节课通过拼图游戏,让学生动手操作,在活动中既复习了单项式与多项式相乘,又引出多项式相乘的运算。由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。

美国认知心理学家加涅指出,学习者学会了如何学习、如何记忆、如何获得更多的学习思维和分析思维,将会使它们变得越来越自主学习。所以,在教学中非常注重引导学生进行反思,在探究问题的过程中引导学生思考运用了哪些数学思想,例如本课中将多项式乘法转化为单项式乘以多项式的“转化”的思想,运用乘法分配律时的“整体”思想,拼图列式中运用的“数形结合”思想等,可以帮助学生从本质上理解所学知识,并提高解决问题的能力,真正使教学过程起到“授之以渔”的作用。

整式的乘法教案篇十五

这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸,这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:

一是各个单项式的系数相乘,

二是同底数幂相乘,

三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

三、注意实际问题主要是图形的面积问题的正确解决。

整式的乘法教案篇十六

通过本节课的教学实践,我再次体会到:课堂上的真正主人应该是学生。教师只是一名引导者,是一名参与者。一堂好课,师生一定会有共同的、积极的情感体验。本节课教学中,各知识点均是学生通过探索发现的,学生充分经历了探索与发现的'过程,这正是新课程标准所倡导的教学方法。教学中没有将重点盯在大量的练习上,而是定位在知识形成的过程的探索,这是更加注重学生学习能力的培养的体现,实践证明这种做法是成功的。今后的教学中要继续注重引导学生自我探索与自我发现,注重挖掘教材的能力生长点,挖掘教材的内涵,着眼于学生终身发展的需要,为学生的终身发展奠定基础。

整式的乘法教案篇十七

本部分的内容是在已经学习了有理数的四则混合运算、幂的概念、字母表示数、合并同类项、去括号、整式的加减等内容的基础上进行的,是前面知识的延伸,这是承前,本章具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。整式的乘法这一块内容主要分成三块内容。

第一块是单项式乘单项式,这一块内容主要是要注意运算的法则依据。

是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

第二块是单项式乘多项式,这一块内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

第三块内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

在整个这一块的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

整式的乘法教案篇十八

整式的乘法是在学生学习了同底数幂的乘法、幂的乘方、积的乘方等知识之后安排的有关整式的运算学习。幂的有关运算法则的学习主要是幂的意义的基础之上来学习的,这一部分内容主要法则依据是乘法的交换律及结合律,知识点相对较少且难度不大,在这节课的学习中通常教学模式来安排每一节课的学习。

第一环节:自学质疑。

让学生自学课本相关内容,并提出相关问题:

(1)认真学习课本中探究,并对探究中问题认真填空,且要说明道理;

(2)领会问题中作题依据;

(3)归纳出你自学中体现出的乘法法则并会用字母表示。

(4)记下你在自学中遇到的问题以及在法则中的不解之处,以备讨论。

第二环节:合作释疑。

先以小组为单位进行组内讨论,对于每个组员出现的问题进行交流,解除疑惑,组内不能解决的,组长作好记录,以进行全班讨论。

而对于讨论仍然不能解决的问题老师要作好班内讲解。

第三环节:展示评价。

以小组为单位派一个中下等水平的学生进行展示。可口头也可黑板上板演,然后组与组间交换进行评价,查找问题,对出现的问题进行全班纠正。

第四环节:巩固深化。

由学生分组板演课后相关练习,并进行组间互评。若学生掌握较好,则适时给出一些较复杂的问题如把和差与乘法的结合的计算让学有余力的学生进行练习,从而提高其运算能力,然后布置难易两组作业,一组必作,一组选作。

这部分内容是在学习了有理数的四则混合运算、幂的定义、合并同类项、去括号、整式的加减、幂的有关运算法则内容的基础上进行的,它是前面知识的延伸,具有承前启后的作用,承前是继整式的加减之后而学习,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习以及进行整式的加、减、乘、除综合运算的基础。整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,有乘方的要先算乘方,后算乘法,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容是第一部分的延伸,其依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定,还要注意分配律的复习。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。混合运算是一个难点,在混合运算中注意括号运算,不要漏括号。

在这几部分的学习中,从学生课堂表现与作业完成情况看,效果还不错,学生整体对法则的掌握较好,但在处理一些涉及符号以及乘除与加减同时出现的一些问题时,出现的错误较多,另外合并同类项与幂的运算法则在运用中也出现混淆的现象。

在整个这一部分的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。混合运算中符号及各种运算法则混淆不清,运用还不够熟练。对这些问题的解决除了加强基本法则运用之外,还应对于综合题目多加练习,以达到巩固提高的目的。

整式的乘法教案篇十九

整式的乘法是在学生学习了同底数幂的乘法、幂的乘方、积的乘方等知识之后安排的有关整式的运算学习。下面是由小编为大家带来的关于整式的乘法。

希望能够帮到您!

这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸.这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

在整个这一部分的内容教学中,难点与易错点主要是:

1、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

2、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

3、注意实际问题主要是图形的面积问题的正确解决。

注重难点与学习方法。

新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。

建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。

3、教育的根本目的在于促进每一个学生的发展,这也是数学教育的根本目的,因此教师在。

教学设计。

时,结合学生实际,有效整合教材,精选例习题,分层施教。本单元教学是以习题训练为主的,教学时注意选择了有层次的例题和练习,采用“兵教兵”的方法,组织学生开展合作学习。在探究问题的设计上也是由浅入深,目的就在于通过引导学生对问题的解决,能熟练掌握基础知识,灵活运用基本方法,提高分析问题和解决问题的能力。

依据教学内容及教学要求,本节课通过拼图游戏,让学生动手操作,在活动中既复习了单项式与多项式相乘,又引出多项式相乘的运算。由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。

5、加强反思,注重对学生数学思想方法的渗透。

美国认知心理学家加涅指出,学习者学会了如何学习、如何记忆、如何获得更多的学习思维和分析思维,将会使它们变得越来越自主学习。所以,在教学中非常注重引导学生进行反思,在探究问题的过程中引导学生思考运用了哪些数学思想,例如本课中将多项式乘法转化为单项式乘以多项式的“转化”的思想,运用乘法分配律时的“整体”思想,拼图列式中运用的“数形结合”思想等,可以帮助学生从本质上理解所学知识,并提高解决问题的能力,真正使教学过程起到“授之以渔”的作用。

本节是学习了同底数幂的乘法、幂的乘方、积的乘方后的综合运用,是因式分解的逆运算,也是进行因式分解的基础,其中,单项式乘以单项式是本节的重点,单项式乘以多项式中项的符号的确定是本节的难点,而单项式乘以多项式有转化到单项式与单项式的相乘,因此,掌握好单项式乘以单项式是关键,本人从以下几方面作反思:

也从课本开头的问题引入,具体的数据,问题较简单,学生很快进入了状态,激发了学生求知的兴趣引出本节内容。然后将上式作适当的变形,用字母表示叙述几个例子,引出单项式乘以单项式法则的内容,通过类比的思想方法,由数的运算引出式的运算规律,体现了数学知识间具体与抽象、从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,从课堂学生做习题的情况来看,掌握的比较好。在讲解第二个知识点时,用形象的图形来揭示多项式乘以多项式公式,学生也较易掌握,而在突破符号这一难点时,设计让学生先找多项式中由哪些项所组成,然后用单项式去乘以这些项,添回原先和式中省略了的加号,结果在练习中学生也突破了最容易犯的符号错误。并提出通过多项式乘以多项式的法则,把这个问题转化到单项式乘以单项式中,而单项式乘以单项式又转化到数的乘法与同底数幂的乘法,体现新知识与已学知识间的联系,注意转化的思想方法。整堂课中学生参与性较强,气氛活跃,知识落实到位。

在公式的推导过程中,还应更加让学生自己去得出结论,体现认识知识循序渐进的过程。例题的讲解不妨让学生尝试去做,让学生去犯错,然后去加以纠正,以加深印象,防止同样错误的发生。在小结时,还可以让学生再次去总结本节课中常犯的错误。

一节平常的数学课,经过反思,会发现许多值得推敲的地方,在许多细节的地方需要精心设计,这样才能做到以学生为主体,使学生学活学透,真正完成教学目标。

整式的乘法教案篇二十

本节是学习了同底数幂的乘法、幂的乘方、积的乘方后的综合运用,是因式分解的逆运算,也是进行因式分解的基础,其中,单项式乘以单项式是本节的重点,单项式乘以多项式中项的符号的确定是本节的难点,而单项式乘以多项式有转化到单项式与单项式的相乘,因此,掌握好单项式乘以单项式是关键,本人从以下几方面作反思:

也从课本开头的问题引入,具体的数据,问题较简单,学生很快进入了状态,激发了学生求知的兴趣引出本节内容。然后将上式作适当的变形,用字母表示叙述几个例子,引出单项式乘以单项式法则的内容,通过类比的思想方法,由数的运算引出式的运算规律,体现了数学知识间具体与抽象、从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,从课堂学生做习题的情况来看,掌握的比较好。在讲解第二个知识点时,用形象的图形来揭示多项式乘以多项式公式,学生也较易掌握,而在突破符号这一难点时,设计让学生先找多项式中由哪些项所组成,然后用单项式去乘以这些项,添回原先和式中省略了的加号,结果在练习中学生也突破了最容易犯的符号错误。并提出通过多项式乘以多项式的法则,把这个问题转化到单项式乘以单项式中,而单项式乘以单项式又转化到数的乘法与同底数幂的乘法,体现新知识与已学知识间的联系,注意转化的思想方法。整堂课中学生参与性较强,气氛活跃,知识落实到位。

在公式的推导过程中,还应更加让学生自己去得出结论,体现认识知识循序渐进的过程。例题的讲解不妨让学生尝试去做,让学生去犯错,然后去加以纠正,以加深印象,防止同样错误的发生。在小结时,还可以让学生再次去总结本节课中常犯的错误。

一节平常的数学课,经过反思,会发现许多值得推敲的地方,在许多细节的地方需要精心设计,这样才能做到以学生为主体,使学生学活学透,真正完成教学目标。

【本文地址:http://www.xuefen.com.cn/zuowen/15069170.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档