圆与圆的位置关系的教案(优秀16篇)

格式:DOC 上传日期:2023-11-26 06:59:18
圆与圆的位置关系的教案(优秀16篇)
时间:2023-11-26 06:59:18     小编:琴心月

教案是教学过程中规范教学行为的工具,有助于确保教学的连贯性和系统性。那么我们该如何编写一份优秀的教案呢?首先要明确教学目标,设定合理的目标是教学成功的关键。然后要合理设计教学内容和教学步骤,保证教学过程的连贯性和逻辑性。同时,要精心选择教学方法和教学手段,以激发学生的学习兴趣和潜能。最后,要合理评估教学效果,及时调整教学策略,以达到良好的教学效果。在编写教案时,可以参考以下案例,了解如何合理安排教学步骤和教学内容。

圆与圆的位置关系的教案篇一

教学目标:

1.使学生理解直线和圆的相交、相切、相离的概念。

2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。

3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。

重点难点:

2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。

教学过程:

一.复习引入。

(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)。

二.定义、性质和判定。

1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。

(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。

(3)直线和圆没有公共点时,叫做直线和圆相离。

圆与圆的位置关系的教案篇二

1、圆的定义:

到定点的距离等于定长的点的集合。

在圆内、在圆上、在圆外(由点和圆心的距离与圆的半径大小来确定)。

3、弦、直径、孤、弓形、半圆、同心圆、等圆、等孤等概念。

等弧一定要强调要在同圆或等圆中;半圆不包括直径。

4、过三点的圆(三角形的外心)。

经过三角形三个顶点的圆叫三角形外接圆;外接圆的圆心叫三角形的外心;三角形的外心是三条边中垂线的交点,到三个顶点距离相等;直角三角形外心在斜边上、锐角三角心外心在三角形内、钝角三角形外心在三角形外。

5、垂径定理及其推论:

定理及推论1:直线过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧这五要素中用其中两个要素做条件就能推导出其它三个要素都成立。若用过圆心、平分弦做条件时要强调被平分的弦不是直径。

推论2:平行弦所夹的弧相等。

6、圆心角、弦、弦心距、弧的关系:

圆心角、弧、弦、弦心距之间的相等关系必须要在同圆或等圆中才能成立;

弧的度数就等于它所对圆心角的度数。

7、圆周角定理及推论:

圆周角的定义:顶点在圆上,角的两边都与圆相交。

圆周角的定理:圆周角等于同弧所对圆心角的一半。

推论1、在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等,它所对的弧也相等。

推论2:直径和半圆所对的'圆周角等于90度,90度的圆周角所对的弦是直径,所对的弧是半圆。

推论3、三角形一边的中线等于这一边的一半时,这个三角形是直角三角形。

8、圆内接四边形:

定义:四个顶点都在圆上的四边形。

定理:圆内接四边形对角互补。

推论:圆内接四边形的外角等于它的内对角。

相交、相切、相离(由公共点个数或圆心到直线距离和圆的半径大小来确定)。

10、切线的判定和性质:

定义:与圆只有一个公共点的直线。

判定定理:经过半径的外端且垂直于半径的直线是圆的切线。

性质定理:经过切点的半径必垂直于切线。

推论1:经过切点且垂直于切线的直线必经过圆心。

推论2:经过圆心且垂直于切线的直线必经过切点。

11、三角形内切圆:

定义:与三角形三边都相切的圆叫三角形内切圆、内切圆的圆心叫三角形内心。内心是三角形三条角平分线的交点,到三角形三边距离相等。

12、切线长定理:

定理:圆外一点到圆的两条切线的长相等,这个点与圆心的连线要平分两条切线的夹角。

(圆内切四边形对边相加相等)。

13、弦切角:

定义:一条边是圆的切线,顶点是切点,另一条边与圆相交的角;

定理:弦切角等于它所夹弧对的圆周角。

推论:两个弦切角所夹的弧相等,这两个弦切角相等。

14、和圆有关的比例线段:

相交弦定理及推论、切割线定理及推论。

圆与圆的位置关系的教案篇三

一、教学目标:

根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

(1)知识目标:

a、知道直线和圆相交、相切、相离的定义。

会根据直线和圆相切的定义画出已知圆的切线。

c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

2)能力目标:

让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

3)情感目标:

在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

二.教材的重点难点。

直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

三.在教学中如何突破这个重点和难点。

解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。

在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

(4)突破直线和圆的位置关系的(如果圆o的半径为r,圆心到直线的距离为d,

3.直线l与圆o相离=dr。

(上述结论中的符号“=”读作“等价于”)。

式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。

四、教学程序。

[提问]通过观察、演示,你知道直线和圆有几种位置关系?

[讨论]一轮红日从海平面升起的照片。

[新授]给出相交、相切、相离的定义。

[类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

[巩固练习]例1,

出示例题。

(1)r=2cm;(2)r=2.4cm;(3)r=3cm。

由学生填写下例表格。

公共点个数。

圆心到直线距离d与半径r关系。

公共点名称。

直线名称。

图形。

补充练习的答案由师生一起归纳填写。

教学小结。

直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。

本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。

圆与圆的位置关系的教案篇四

1、圆的公式c==()s=()。

2、已知圆的周长,公式求d=(),求r=()。

3、圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。

4、环形面积s=()。

5、用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。

6、大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。

7、圆的半径增加1/4,圆的周长增加(),圆的面积增加()。

8、一个半圆的周长是20.56分米,这个半圆的面积是()平方分米。

9、将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长长10厘米,这个长方形的面积是()平方厘米。

10、在一个面积是24平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米;再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。

11、大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为()平方厘米。

12、大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是()平方厘米。

二.判断。

(1)通过圆心的线段,叫做圆的直径。()。

(2)周长是所在圆直径的3倍多一些。()。

(3)半径是直径的一半。()。

(4)任何圆的圆周率都是3.14。()。

(5)半圆的周长等于圆的周长的1/2加直径的长,所以半个圆的面积等于圆面积的1/2加直径的长度。()。

(6)圆的半径扩大5倍,圆的`面积也扩大5倍。()。

(7)半径是2厘米的圆,周长和面积相等。()。

(8)半圆形纸片的周长就是圆周长的一半。()。

(9)把半径3厘米的圆等分成十六份,拼成一个近似长方形,长方形的周长比圆的周长长。()。

三、应用题。

1、一个环形的外圆半径是8分米,内圆半径5分米,求环形的面积?

4、

(1)轧路机前轮直径1.2米,每分钟滚动6周。1小时能前进多少米?

圆与圆的位置关系的教案篇五

二、教材分析:

1、教材的地位和作用。

圆是在学习了直线图形的有关性质的基础上,来研究的一种特殊曲线图形。它是常见的几何图形之一,在初中数学中占有重要地位,中考中分值占有一定比例,与其它知识综合性强。而本节课《圆和圆的位置关系》的第一节,它是在学习点与圆以及直线与圆的位置关系基础上,对圆与圆的位置关系进行研究.学生亲自动手实践,自主探究圆和圆的位置关系,观察分析,猜想验证,完成从感性到理性的发生发展的认知过程.然后知识遵循了从实践走向数学,从数学走向生活,让学生学以自用,把数学知识与现实生活紧密相联。本节内容共安排2课时,第一课时让学生明白圆和圆的位置关系,知道五种关系,并能用它解决问题。第二课时强化位置关系的运用,重点解决两圆相交的推理题、计算题,欣赏中考真题。

2、教学目标:(1)知识目标。

1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.

学生经过操作、实验、发现、确认等活动,从探索两圆位置关系地过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感。

3、教材重、难点的处理。

最后辅之一相关练习题,得以巩固。

4、教法、学法。

三、学情分析:九年级学生对圆有一定的认识,但对圆的相关性质掌握较少,对知识的转化能力较差,重在要学生参与,主动探究,增加解决实际问题的能力。由于九(1)班有44名学生,他们中一半的学习基础较好,独立学习的能力也比较强,能在课前对将要教学内容进行预习,在课堂上也能积极发言,作业也能独立完成;但也有部分学困生在知识的理解和动手的能力上存在问题。因此要求他们对本课的内容进行预习熟知。通过预习将教学的重点和难点应放在两圆圆心距与两圆半径间的数量关系的推导总结上。

大部分学生对这节课的学习有很高积极性,加上课件动画中图片和总结圆和圆的位置关系的定义、圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系动画效果采用,学生的学习主动性和探求知识的情绪也会很高,运用课件也能激发他们学习的欲望。

但本班学习相对较困难的学生,对重点和难点的理解可能存在一定困惑。对这种个别现象,不做强制性要求,只帮助他们能理解圆和圆的位置关系并记住两圆圆心距与两圆半径间的数量关系即可。

四、教学过程。

(一)、复习导入:请说出点与圆;直线与圆的位置关系,并分别说出判定方法。

情景创设:我们生活在丰富多彩的图形世界里,圆与圆组成的图形是我们生活中最常见的画面。比如:自行车的两个轮子、奥运会的会标、皮带轮、红绿灯等照片(大屏幕演示),你还能举出两个圆组成的图形吗?(学生举例)。

(设计意图:展现生活中圆与圆组成的图形并由学生举出实例,丰富学生对客观世界中两个圆之间多种不同位置关系的感受,为学生自主探索提供可能。)。

(二)、新授[活动一]。

教师课前布置好:每人都在纸上画两个半径不等的圆,每个人都准备在纸上移动其中一个圆,让学生观察两圆的位置关系和公共点的个数。

让学生自己画出可能会出现的几种情况,并标清交点的个数(按从远到近的顺序)。

问题2,试一试你能不能描述两圆的各种位置关系?学生思考回答,师生共同总结:

1.两个圆没有公共点,就说这两个圆相离,如上图中的(1)、(5)、(6),它们又有何区别?讨论得出其中(1)叫外离,(5)(6)叫内含,(6)是两圆同心,是两圆内含的一种特殊情况。

2.两圆只有一个公共点,就说这两圆相切,如上图是的(2)(4),同样找出它们的区别,其中(2)叫外切,(4)叫内切。

3.两圆有两个公共点,就说这两个圆相交,如上图(3)。因此两园的位置关系为:(大屏幕投影)。

(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图1)。

(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图2)。

(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图3)。

(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图4)。

(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图5).两圆同心是两圆内含的一个特例.(图6)。

大屏幕展示圆和圆的五种位置关系:外离、外切、相交、内切、内含。

问题3,两个圆的位置关系发生变化的时候,圆心距d与两个圆的半径r与r(rr)之间有没有内在的联系?请同学们交流一下(给出一定的时间)大屏幕演示两圆由远到近的运动情形,让学生观察圆心距d的变化,然后让学生进行归纳。

教师重点关注:学生思考问题的全面性和准确性,尤其是对两圆相交时的圆心距的范围考虑的是否到位。(教师可提示利用三角形三边之间的关系来解决问题)师生共同总结:(大屏幕出示)。

两圆外离dr+r。

两圆外切d=r+r两圆相交r-r。

两圆内切d=r-r(rr)两圆内含dr)。

[活动二]练习巩固,大屏幕出示:

1、若两圆有唯一公共点,且两圆半径分别为5和2,则两圆圆心距为。

(2)r=5,r=2,d=1。

(3)r=7,r=3,d(4)r=5,r=2,d=7。

(5)r=4,r=1,d=6。

教师重点关注:学生应用“数量关系”判定两圆“位置关系”的准确性,尤其注意,只有dr-r或只有d。

(设计意图:进一步让学生理解新知,并能熟练准确的应用新知,培养学生全面细致的良好思维品质。)。

3、大屏幕出示问题:

例如图,oo的半径为4cm,点p是oo外一点,op=6cm。求(1)以p为圆心作opop与oo外切,小圆op的半径是多少?(2)以p为圆心作op与oo内切,大圆op的半径是多少?教师给出图形、板书解答过程。

(设计意图:培养学生严谨缜密的思维品质,加强“分类讨论”数学思想的训练。)。

(三)、拓展联系:试一试:

一块铁板,上面有a、b、c三个点,经测量,ab=13cm,bc=14cm,ca=9cm,以各顶点为圆心的三个圆两两外切。求各圆的半径。

教师重点关注:应用新知解决问题的能力,进一步巩固新知。

(设计意图:渗透三圆相切的情况,培养学生分析、探究问题的能力。)[活动三]拓展探索:

两个圆组成的图形是轴对称吗?如果是那么对称轴是什么?如果两圆相切,切点与对称轴有什么关系?提示,学生可以用折纸方法进行探究。(学生分组讨论,小组选代表回答问题)大屏幕出示:正确结论。

两圆组成的图形是轴对称图形,对称轴是通过两圆圆心的直线(连心线),两圆相切时,因为切点是它们唯一的公共点,所以切点一定在连心线上即对称轴上。

(设计意图:设计折纸活动实质上是让学生感知两圆组成的图形是轴对称图形,并让学生通过自己的活动从心理上认同经过两圆圆心的直线(即连心线)是两圆组成图形的对称轴为探索两相切、两圆相交的性质创设学习情境。)。

(四)、小结。

这节课你有哪些收获?有何体会?你认为自己的表现如何?引导学生回顾、思考、交流。

(五)、作业:

1、课本51页,习题。

3、

4、5。

2、课下探究:相交两圆的连心线与公共弦有什么样的结论。

3、写一篇数学日记,并解决2—3个问题。

例题板书外离。

dr1+r2外切。

d=r1+r2相交。

r1-r2。

d=r1-r2内含。

d

五、教学反思。

由于本节圆与圆的位置关系是新课,这节课的内容与上节“直线和圆的位置关系”有密切的联系,但这节课的两圆位置关系远比直线与圆的位置关系复杂。因此,我通过让学生动手操作类比直线与圆的位置关系,猜测两圆可能存在的位置关系,然后经过讨论,归纳确定两圆位置关系的各种情况。在与两圆位置关系相应的三量的数量关系的研究中,鉴于学生已有直线与圆的位置关系中两量(半径、圆心到直线的距离)的数量关系的认知基础,就只运用了类比迁移的方法。这些方法的运用,都是为了充分发挥学生在探求新知过程中的主体作用。当然也有不足之处,比如:虽然我竭力提醒自己要体现出以学生为本的课改精神,但在具体操作中还是会不自觉地喜欢代学生表达观点,往往会发生,学生还没把话说完,我已经急着归纳了。今后我会更加努力,争取向课堂要效率。

圆与圆的位置关系的教案篇六

教学目的要求:

知识目标:1、了解圆和圆五种位置的定义,

情感目标:利用多种教学手段来激发学生学习的兴趣,通过鼓励和肯定学生,培养他们敢于。

想象,勇于探索的学习精神。

教学用具:多媒体。

教学方法:问题、引导、直观演示、总结。

学法指导:猜想、类比、观察、归纳、实验探究、合作交流。

教学过程:

圆与圆的位置关系的教案篇七

尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

一、教材分析。

教材的地位和作用。

圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。

二、学情分析。

在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

三、教学目标:

根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:

(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;

陪养学生观察、分析和概括的能力;

(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。

教学的重难点:

圆与圆的位置关系的教案篇八

这课节主要是引导学生进行“回顾与整理”,完成第74-75也“练习与应用”第1-5题。回顾与整理时要组织学生交流本单元的学习体会,交流对小数点位置移动引起小数大小变化的规律的理解。

教学目标。

1、通过回顾与整理以及练习与应用活动,让学生进一步巩固以学过的小数乘除法的计算方法,加深对小数点位置移动引起小数大小变化的规律的理解。

2、培养学生乐于学习,乐于与同伴合作并分享学习成果的良好学习品质。

教学重点。

与难点加深对小数乘除法计算方法,以及数学规律的'认识。

教具多媒体课件。

根据学生学习情况随机板书。

教学过程。

师生双边活动。

改进意见。

一、回顾与整理。

这一单元,你了解了什么规律?学会了哪些计算?

学生小组交流,集体汇报。

二、练习与应用。

1、口算练习。

学生独立口算,集体订正。

2、第2题。

引导学生将后面六栏中的两个因数分别与第一栏进行比较,明确当一个因数不变时,另一个因数乘或除以几,那么积也随着乘或除以几,从而初步体会积的变化规律。

3、用竖式计算。

学生独立计算,师计时,并巡视指导,集体交流,指名说说计算方法。

4、第4题。

让学生根据题目的特点,判断哪几题的商小于1,再通过计算验证开始的判断是否正确。

5、第5题。

让学生说说每道题的改写方法,弄清是乘进率还是除以进率,再决定小数点是向右移动还是向左移动。

三、全课小结。

通过今天的整理与复习,你有哪些收获?你觉得在计。

教学过程。

师生双边活动。

改进意见。

算小数乘、除法时应注意些什么?

学生自由发表意见,全班交流。

四、作业。

完成《学习与探究》。

课后小记:

圆与圆的位置关系的教案篇九

20xx.11.17早上第二节授课班级:初三、1班授课教师:

过程与方法目标:

2.通过例题教学,培养学生灵活运用知识的解决能力。

情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

利用多媒体放映落日的动画,初中数学教案《数学教案-直线和圆的位置关系(公开课)》。引导学生从公共点个数和圆心到直线的.距离两方面体会直线和圆的不同位置关系。

学生看投影并思考问题。

调动学生积极主动参与数学活动中.。

探究新知。

1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

布置作业。

1、课本第101页7.3a组第2、3题。

2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

圆与圆的位置关系的教案篇十

2、过程与方法。

(1)当时,圆与圆相离;

(2)当时,圆与圆外切;

(3)当时,圆与圆相交;

(4)当时,圆与圆内切;

(5)当时,圆与圆内含;

3、情态与价值观。

让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想、

问题。

设计意图。

师生活动。

结合学生已有知识以验,启发学生思考,激发学生学习兴趣、

教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流、

引导学生明确两圆的位置关系,并发现判断和解决两圆的位置。

问题。

设计意图。

师生活动。

关系的方法、

学生观察图形并思考,发表自己的解题方法、

3、例3。

你能根据题目,在同一个直角坐标系中画出两个方程所表示的圆吗?你从中发现了什么?

培养学生“数形结合”的意识、

进一步培养学生解决问题、分析问题的能力、

师:启发学生利用图形的特征,用代数的方法来解决几何问题、

5、从上面你所画出的图形,你能发现解决两个圆的位置的其它方法吗?

进一步激发学生探求新知的精神,培养学生。

师:指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的'位置、

师:对于两个圆的方程,我们应当如何判断它们的位置关系呢?

7、阅读例3的两种解法,解决第137页的练习题、

巩固方法,并培养学生解决问题的能力、

师:指导学生完成练习题、

生:阅读教科书的例3,并完成第137页的练习题、

问题。

设计意图。

师生活动。

8、若将两个圆的方程相减,你发现了什么?

得出两个圆的相交弦所在直线的方程、

师:引导并启发学生相交弦所在直线的方程的求法、

生:通过判断、分析,得出相交弦所在直线的方程、

9、两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?

进一步验证相交弦的方程、

师:引导学生验证结论、

生:互相讨论、交流,验证结论、

10、课堂小结:

教师提出下列问题让学生思考:

(3)如何利用两个圆的相交弦来判断它们的位置关系?

作业:习题4、2a组:4、7、

圆与圆的位置关系的教案篇十一

一、课程目标分析:

《普通高中数学课程标准》指出:在平面解析几何初步的教学中,教师应帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

二、教材分析:

1、教材的地位和作用:

《直线与圆的位置关系》这一节内容出现在必修2的第二章《平面解析几何初步》的第二节《圆与圆的方程》的第三小节的位置。就整套教材而言,《平面解析几何初步》一章的教学主要是让学生体会到用代数方法处理几何问题的思想,为选修教材中的《圆锥曲线与方程》一章打好基础。它是前两节《直线与直线方程》和《圆与圆的方程》的综合应用,也为后一小节《圆与圆的位置关系》提供研究方法的一个重要示例,是整个《平面解析几何初步》章节的重要内容,起着贯穿始终、应用反馈的重要作用,而且是贯彻“用代数方法处理几何问题”思想和“数形结合”方法的重要的反映内容和工具。在本章中的作用非常重要。

2、教材重点、难点。

圆与圆的位置关系的教案篇十二

对于今天的课,同行们褒贬不一,我也有自己的想法。

从前讲过多次研究课,都没有及时写出课后反思,今天却例外,因为我感到,在教学多年以后,需要思考的东西却更多了。

一、教师的主导作用和学生主体地位之间的关系。

最近两年一直给普通班的学生授课,其中也有几个数学尖子,可是这个学期,由于毕业升学考试的需要,按照总体成绩排队,这样我的学生就是纯粹的学习落后生了。为了让学生能够在最后的一年里提高对数学的兴趣,树立学习的自信,我放慢进度,给学生创造条件,让他们亲身经历探索的过程,了解数学的真谛,对基本概念、定理等有深入的研究,知道他们从哪里来,怎么来的,又要用到哪里去。有时候为了让学生能够自己去观察、猜想、验证、归纳和总结,一节课不行,我就用两节课。经过一段时间的努力,我惊喜地发现,原来从不及格几乎放弃学习数学的学生,在课堂上流露出自信的微笑,眼中放射出为自己骄傲的光芒。就在期中考试后,有四名学生的成绩达到103分以上,在全年级明列前茅,有两名学生被提高班录取。也正是他们,让我感到做一名教师的分量有多重。这也许就是大家所说的教师的主导作用吧。

我想,教师的主导作用应当体现在每一节课的课堂教学中,更应该体现在整个教学过程中,所以当我面对这样一批学生的时候,全然不顾大约40位老师的观摩,时间一点点过去了,在学生终于得出结论的时候,下课的时间到了,预设的练习题没有做,于是显得这节课不够完整。

同行们针对这节课的前松后紧,而归结为忽视教师的主导作用,过分强调学生的主体地位,这一点值得我去思考,如何把握这个度,在以后的教学实践中,还应该努力去探索。

二、要加强多媒体辅助教学的实效性。

由于学校的条件有限,使用投影布,就遮住了大部分黑板,而且还要关灯,拉窗帘,感觉像是看电影,也容易让学生感觉困倦、压抑。所以平时用的时候,都是不得以才用。今天有摄像,又有那么多老师听课,这些琐事都不好做了,于是我的课间作的很精细,却让我感觉施展不开,很是别扭。

听过武春兰老师讲过运用几何画板作图形的迭代,很漂亮,可是没有机会去学习,平时也没有特别的研究,基本的演示可以做,更多细节完善的地方就不会了。所以今天的课,我使用了ppt和几何画板的超级链接,在切换的过程中有点浪费时间,也显得衔接的不自然。

到了晚上,我又一次打开几何画板,仔细打开每一个菜单,还真的弄明白了几个问题,看来以后要主动学习更多的知识,只有加强各方面的技能,才能够在教学过程中,灵活运用,真正起到辅助教学的作用。

三、合理设计情境,发挥教学资源的作用。

我选用的日食图片及其形成过程,还有套圈游戏的图片,只是起到了欣赏、直观感受的'作用,当老师们提到,对于探索能力差的学生来说,如果让他们在套圈游戏中寻找圆和圆的位置关系,可能比自己画图、摆图形更节省时间。一个直观,一个抽象,当然直观图形要易于学生掌握。当时在设计的时候,我是想让学生通过两圆相对运动来发现各种位置关系,从而体现运动变化的观点和体会分类的思想,这样对于一批学习落后的学生来说,有助于他们日后思维能力的形成,学会观察,学会思考,能够用辩证的观点对待学习和生活,树立正确的世界观和人生观。所以我感觉我的目的还是达到了,同学们都在积极地思维,都有了自己的想法,尽管不够完美,但毕竟是自己研究的成果,这个过程我认为是最重要的,也体现了课标的要求,让学生亲身经历探索的过程,获得愉悦的体验。

是“绿耕”让我停下教育的脚步,认真反思过去多年来在教育过程中存在的问题,同样还是“绿耕”,给我一个提高的机会,让我站在理论的高度,去展望更好的教育前景。……我想了很多,以后的路还长,需要实践的东西也太多,不断努力吧!

将本文的word文档下载到电脑,方便收藏和打印。

圆与圆的位置关系的教案篇十三

但在本节课中还存在许多不足之处,主要在以下几方面:

1、在学生分组活动中,个别学生不能参与进来,今后教学应该多加关注学困生。

2、教学语言应该注意更加规范。

4、本节课应该再加大练习量,进一步落实“知识与技能”的目标。

授课后,各位教师直述己见,让我认识到自己需要继续努力.

在授课时,更要注重数学语言的规范运用,加强学习,进一步充实自己的教学经验。

圆与圆的位置关系的教案篇十四

"思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。

在《直线和圆的位置关系》一课教学后,感受颇多,现分享如下:

开课时,借助微机展示“圆圆的落日慢慢从海平面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。

在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。 最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。

在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:

1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。

3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现"授人以鱼不如授人以渔"。

总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。

圆与圆的位置关系的教案篇十五

《点与圆的位置关系》教学反思本节课的教学内容是点和圆的位置关系,看似内容少而简单,但让学生真正理解如何由图形关系得出数量关系,以及从数量关系联想到图形的位置关系,却并非简单。教师如果忽略了这一过程,学生会做题,却无法体验数学的本质,无法体验数形结合思想。所以本节课中点和圆的位置关系让学生经历了由图形关系联想到数量关系、由数量关系联想到图形关系的过程,是学生真正理解点和圆的位置关系与点到圆心的距离和半径之间关系的等价。

2、经过一个点可以作几个圆?

3、经过两个点可以作几个圆?圆心有什么特点?

4、经过不在同一直线上的三点可以作几个圆?

5、过在同一直线上的三点能作圆吗?如果不能如何证明。

6、经过三角形三个顶点的圆即通过画图、观察、分析、发现经过一个已知点可以画无数个圆,经过两个已知点也可以画无数个圆,但其圆心分布在连接两点线段的垂直平分线上,经过不在同一直线上的三点可以确定一个圆。

归纳:点与圆有哪几种位置关系?点与圆的位置关系可以根据什么来判定?通过这节课,学生们深切感受到预习在学习中的重要作用,也通过自己的预习对所学知识有理更深入的理解,提高了课堂效率;同时,通过对这节课的反复推敲设计与反思,我也深切感受到对教材研究的重要性。

圆与圆的位置关系的教案篇十六

:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。

:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。

二、教学重、难点。

难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。

三、教学设计。

问   题。

设计意图。

师生活动。

2.图形中的圆与直线的位置都是一样的吗?

师:让学生之间进行讨论、交流,引导学生观察图形,导入新课.

生:看图,并说出自己的看法.

师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.

问   题。

设计意图。

师生活动。

使学生回忆初中的数学知识,培养抽象概括能力.

师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.

生:利用图形,寻找两种方法的数学思想.

师:指导学生阅读教科书上的例1.

生:阅读科书上的例1,并完成教科书第128页的练习题2.

师;分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.

生:交流自己总结的步骤.

师:展示解题步骤.

7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?

进一步深化“数形结合”的数学思想.

师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.

问   题。

设计意图。

师生活动。

8.通过例2的学习,你发现了什么?

明确弦长的运算方法.

师:引导并启发学生探索直线与圆的相交弦的求法.

生:通过分析、抽象、归纳,得出相交弦长的运算方法.

9.完成教科书第128页的练习题1、2、3、4.

师:引导学生完成练习题.

生:互相讨论、交流,完成练习题.

10.课堂小结:

教师提出下列问题让学生思考:

作业:习题4.2a组:1、3.

【本文地址:http://www.xuefen.com.cn/zuowen/15183299.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档