八年级湘教版数学教案(优质23篇)

格式:DOC 上传日期:2023-11-26 07:14:08
八年级湘教版数学教案(优质23篇)
时间:2023-11-26 07:14:08     小编:雁落霞

教案的编写应符合教材教学大纲和学校的教学要求。老师在编写教案时要注重培养学生的综合能力,培养他们的创新思维和实践能力。下面是一些值得借鉴的教案范文,希望能对大家的教学工作有所启发。

八年级湘教版数学教案篇一

为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

情境设置:

汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

(1)你能用含v的代数式来表示t吗?

(2)时间t是速度v的函数吗?

设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。

为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

一般式变形:(其中k均不为0)。

通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

为加深难度,我又补充了几个练习:

1、为何值时,为反比例函数?

2是的反比例函数,是的正比例函数,则与成什么关系?

关于课堂教学:

由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。

对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

经验感想:

1、课前认真准备,对授课效果的影响是不容忽视的。

2、教师的精神状态直接影响学生的精神状态。

3、数学教学一定要重概念,抓本质。

4、课堂上要注重学生情感,表情,可适当调整教学深度。

八年级湘教版数学教案篇二

教学目标:。

1.在生活实例中认识轴对称图。

2.分析轴对称图形,理解轴对称的概念。

3.了解两个图形成轴对称性的性质,了解轴对称图形的性质。

教学重点1、轴对称图形的概念;2、探索轴对称的性质。

教学难点1、能够识别轴对称图形并找出它的对称轴;。

2、能运用其性质解答简单的几何问题。

教学方法启发诱导法。

教具准备多媒体课件。

教学过程。

一、情境导入。

同学们,自远古以来,对称的形式被认为是和谐、美丽的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称的形式都随处可见,对称给我们带来了美的感受!而轴对称是对称中重要的一种,今天让我们一起走进轴对称世界,探索它的秘密吧!

从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,1.认识生活中的轴对称图形,并能找出轴对称图形的对称轴。2.了解两个图形成轴对称,能找出它们的对称轴及对应点。3.弄清轴对称图形,两个图形成轴对称的区别与联系。

八年级湘教版数学教案篇三

1、认识中位数和众数,并会求出一组数据中的众数和中位数。

2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

3、会利用中位数、众数分析数据信息做出决策。

八年级湘教版数学教案篇四

20。

30。

40。

50。

(1)、第二组数据的组中值是多少?

(2)、求该班学生平均每天做数学作业所用时间。

2、某班40名学生身高情况如下图,

请计算该班学生平均身高。

答案1.(1).15.(2)28.2.165。

八年级湘教版数学教案篇五

教材p144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。

教材p145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。

八年级湘教版数学教案篇六

教学目标:

1.认识“左、右”的位置关系,体会其相对性。

2.能够初步运用左右描述物体的位置,解决实际问题。

3.通过生动有趣的数学活动,使学生体会到学习数学的乐趣。

教学重点:

认识“左、右”的位置关系,体会其相对性。

教学难点:

运用左右描述物体的位置,解决实际问题。

教学过程:

一、创设情境,导入新课。

1.同学对你的同桌说一说,哪只是右手,哪只是左手。

2.我们要来认识“左右”。(板书课题:左右)。

二、联系自身,体验左右。

1.摸一摸。

(2)哪只是左脚?哪只是右脚?

(4)还有左耳和右耳。

(5)还有左眼和右眼。

(6)还有左肩和右肩。……。

(7)生每说一种,教师都引导全体学生用手摸一摸。

三、实际操作,探索新知。

1.摆一摆。

游戏做完了,现在我们要开始摆文具了。同桌的同学互相合作,听清楚老师说的话。

请你在桌上放一块橡皮;。

在橡皮的左边摆一枝铅笔;。

在橡皮的右边摆一个铅笔盒;。

在铅笔盒的左边,橡皮的右边摆一把尺子;。

在铅笔盒的右边摆一把小刀。

生摆好后,师用出示正确的排列顺序,生检查自己的排列。

2.数一数。

从左数橡皮是第几个?从右数橡皮是第几个?

从左数橡皮是第二个,从右数橡皮是第四个。

为什么橡皮一会儿排第二?一会儿又排第四?

什么东西反了?能讲得更清楚一些吗?

(数的顺序反了,开始是从左数,后来是从右数。)。

师小结:也就是说,同样一个物体,从左数和从右数,结果就可能不一样。

3.爬楼梯。上楼梯时我们要靠哪边走?

下楼梯时我们又要靠哪边走?

请你们两位示范一下,把教室中间过道当楼梯,一个从前往后走是下楼梯,另一个从后往前走是上楼梯。

(生观察时师提醒:下楼梯的同学是靠哪边走?)。

(生还是有的说左边,有的说右边。)。

师:教学楼中间有一个楼梯,同学们想不想去走一走?

(全体学生进行室外活动:走上楼梯,又走下楼梯。下楼梯时,师又提醒:下楼梯时你靠哪边走?)。

回到教室。

现在同学们明白下楼梯时靠哪边走吗?

为什么上、下楼梯都靠右边走?

(如果不这样走,上、下楼梯的人就会相撞。)。

对!特别是要做课间操时楼梯比较拥挤,如果相撞就会发生危险。

4.练一练。

(出示课本第61页第3题图)他们都是靠右走的吗?

五、运用新知,解决问题。

1.转弯判断。同学们想不想去公园玩?

那我们就坐这辆大客车去吧!(师拿出玩具客车。)。

准备好,要出发了,请同学们判断客车是往左转还是往右转?

(师在“十字路口图”上演示转弯。)。

小组讨论一下,客车到底是往哪边转。

(生组内讨论交流意见。)。

师生共同小结:站的方向不同,左右也不同。在日常生活中,汽车转弯的方向常常以司机为准。

2.小游戏:我是小司机。

同桌的同学互相配合,左边的同学说命令,右边的同学用玩具小汽车在“十字路口图”上转弯,然后交换角色。

六、课堂总结。

通过这节课,你有哪些收获?你印象最深的是什么?你有什么感想吗?

八年级湘教版数学教案篇七

一、教学目标:熟练地进行分式乘除法的混合运算。

二、重点、难点。

1、重点:熟练地进行分式乘除法的混合运算。

2、难点:熟练地进行分式乘除法的混合运算。

3、认知难点与突破方法:

紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的。课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则。

三、例、习题的意图分析。

1、p17页例4是分式乘除法的混合运算。分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式。

教材p17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点。

2,p17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题。

四、课堂引入。

计算。

(1)(2)。

五、例题讲解。

(p17)例4.计算。

[分析]是分式乘除法的混合运算。分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的。

(补充)例。计算。

(1)。

=(先把除法统一成乘法运算)。

=(判断运算的符号)。

=(约分到最简分式)。

(2)。

=(先把除法统一成乘法运算)。

=(分子、分母中的多项式分解因式)。

=

=

六、随堂练习。

计算。

(1)(2)。

(3)(4)。

七、课后练习。

计算。

(1)(2)。

(3)(4)。

八、答案:

六。(1)(2)(3)(4)-y。

七。(1)(2)(3)(4)。

八年级湘教版数学教案篇八

《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。

但是,这节课也存在很多不足之处:

1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。

2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。

3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。

4、小组合作时个别学生没有真正动起来。

5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。

6、学生证明位似图形时证明过程还是不够严谨。

7、缺少了位似图形在生活中的应用。

改进措施:

1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。

2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。

3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。

4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。

5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。

6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。

7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。

在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。

今天有关今天小编就为大家精心整理了一篇有关英语口语的相关内容,以便帮助大家更好的复习。

八年级湘教版数学教案篇九

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析。

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

八年级湘教版数学教案篇十

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;

平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定。

1.两组对边分别相等的四边形是平行四边形。

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;

矩形的对角线平分且相等。

八年级湘教版数学教案篇十一

严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

八年级湘教版数学教案篇十二

一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算。

二、重点、难点。

1、重点:熟练地进行分式乘方的运算。

2、难点:熟练地进行分式乘、除、乘方的混合运算。

3、认知难点与突破方法。

顺其自然地推导可得:

===,即=。(n为正整数)。

归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方。

三、例、习题的意图分析。

1、p17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判。

断乘方的结果的符号,在分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。.

2、教材p17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习。同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好。

分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点。

四、课堂引入。

计算下列各题:

(1)==()(2)==()。

(3)==()。

[提问]由以上计算的结果你能推出(n为正整数)的结果吗?

五、例题讲解。

(p17)例5.计算。

[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。

六、随堂练习。

1、判断下列各式是否成立,并改正。

(1)=(2)=。

(3)=(4)=。

2、计算。

(1)(2)(3)。

(4)5)。

(6)。

七、课后练习。

计算。

(1)(2)。

(3)(4)。

八、答案:

六、1.(1)不成立,=(2)不成立,=。

(3)不成立,=(4)不成立,=。

2、(1)(2)(3)(4)。

(5)(6)。

七、(1)(2)(3)(4)。

八年级湘教版数学教案篇十三

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点、

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法、

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图、

观察一下,它们有区别吗?说说你观察得到的结果、

本节课在教材中没有相应的例题,教材p152习题分析。

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

八年级湘教版数学教案篇十四

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

算术平方根的概念。

根据算术平方根的概念正确求出非负数的算术平方根。

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

1、提出问题:(书p68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式=a (x0)中,规定x = .

2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。

4、例1求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69练习1、2

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

p75习题13.1活动第1、2、3题

八年级湘教版数学教案篇十五

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图。

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。

明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本。

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习。

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议。

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结。

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级湘教版数学教案篇十六

教学目标:

1、用丰富、生动的教学内容,激发学生学习兴趣,巩固用乘法宽口径求商。

2、经历探索乘、除法算式之间的关系,了解用乘法口诀求商的思路。

3、培养学生分析问题和解决问题的能力。

教学重点:

通过了解、尝试不同的算法,体会用乘法口诀求商的优点。

教学难点:

培养学生合理选择计算方法的能力。

教法:

实践探索法和演绎概括法。加强直观教学的同时,注重从具体到抽象的提升,初步培养学生抽象思维能力。

教学过程:

一、复习引入。

1、口算,说出口诀。

4×2=6×5=2×9=6×3=。

5×5=3×4=2×4=5×4=。

20÷4=35÷5=12÷3=10÷2=。

学生口算,说出得数,并说说计算时用的是哪句口诀。

2、导入新课。

师:上节课我们学会了用乘法口诀求商,这节课我们继续学习用乘法口诀求商中的新知识。

二、互动新授。

1、谈话:同学们,王师傅包子铺今天开张了,我们一起去看看吧。(出示例2图)。

(1)谈谈你从图中得到了什么信息。(观察并收集信息。)。

师:每屉蒸笼装4个包子,有6屉,你知道一共有多少个包子吗?(学生回答。)。

教师追问:为什么用乘法计算?怎样列式?(求一共有多少个包子,表示6个4相加和是多少,用乘法计算,列式是:4×6=24)。

师:我们在计算这道算式时用的是哪句口诀?(四六二十四)。

(2)教师提问:提出什么样的问题才能把这个算式转变成除法算式?

学生看图,改变题目,教师出示:一共有24个包子,每4个一屉,可以装多少屉?

怎样列式?(24÷4=6)。

你是怎样想的?用的是哪句口诀?(四六二十四)。

(3)师:还可以怎样问?(学生自由发言。)。

教师出示题目:一共有24个包子,可以装6屉,每屉装多少个?

怎样列式?(24÷6=4)。

你是怎样想的'?用的是哪句口诀?(四六二十四)。

2、探究乘、除法算式之间的关系。

师:观察黑板上的3道算式,你有什么发现?

学生用自己的语言描述发现的规律。(根据学生探讨的情况,给予积极评价。并且突出强调:乘、除法间的联系,要从算式的变化和算理上理解。)。

3、出示一道口诀,让学生写出三道算式。

三六十八。

根据学生的交流,教师重述:一个乘法算式可以转换成两个除法算式,相应的问题可以变成求其中的一个乘数。这三个数,其中两个数相乘等于一个数,反过来,两个数相除又等于另一个数。

三、巩固拓展。

1、让学生独立完成教材第19页“做一做”的第1题。

先让学生说一说题意,再计算。计算后,同桌互相说一说,怎样想出商。

2、让学生独立完成教材第19页“做一做”的第2题。

让学生观察每组中的3道题,想一想:怎样很快求出各题的商,每到题的口诀各是什么。

3、让学生独立完成教材“练习四”的第5题。

让学生根据小朋友参加“二人三足”游戏的情境写出乘法算式和除法算式。练习时,注意让学生口述图意,提出问题,再写出算式。

交流方法。请学生说一说除法算式的实际含义,并说出,用哪句口诀想商。根据乘法口诀想商,加深对乘、除法关系的了解。

四、课堂小结。

师:这节课你学习了哪些知识?

学生自由发言。

教师小结:

这节课我们在复习用乘法口诀求商的同时,还发现了乘法和除法之间的联系,每一组算式里的三个数,其中两个数相乘等于一个数,反过来,两个数相除又等于另一个数,这就是我们过去学过的乘法算式里和除法算式里各部分之间的关系。找到这样的关系,我们在计算除法时就可以想乘法算除法了。

八年级湘教版数学教案篇十七

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

八年级湘教版数学教案篇十八

一、教学目标:(1)熟练地进行同分母的分式加减法的运算.

(2)会把异分母的分式通分,转化成同分母的分式相加减.

二、重点、难点。

1.重点:熟练地进行异分母的分式加减法的运算.

2.难点:熟练地进行异分母的分式加减法的运算.

3.认知难点与突破方法。

进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.

异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.

三、例、习题的意图分析。

1.p18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.

2.p19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.

第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.

(4)p21例7是一道物理的电路题,学生首先要有并联电路总电阻r与各支路电阻r1,r2,…,rn的关系为.若知道这个公式,就比较容易地用含有r1的式子表示r2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到r的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.

四、课堂堂引入。

1.出示p18问题3、问题4,教师引导学生列出答案.

引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.

2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?

3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?

4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?

五、例题讲解。

(p20)例6.计算。

[分析]第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.

(补充)例.计算。

(1)。

[分析]第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.

解:

=

=

=

=

(2)。

[分析]第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.

解:

=

=

=

=

=

六、随堂练习。

计算。

(1)(2)。

(3)(4)。

七、课后练习。

计算。

(1)(2)。

(3)(4)。

八、答案:

四.(1)(2)(3)(4)1。

五.(1)(2)(3)1(4)。

八年级湘教版数学教案篇十九

《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。

本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。

本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

1、初步理解特殊四边形性质;

2、培养学生自主收集、描述和分析数据的能力;

1、了解特殊四边形性质的形成过程;

2、初步了解探究新知识的一些方法;

1、了解特殊四边形在日常生活中的应用;

2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

教学环境:

多媒体计算机网络教室。

教学课型:

试验探究式。

教学重点:

特殊四边形性质。

教学难点:

特殊四边形性质的发现。

一、设置情景,提出问题。

提出问题:

1、电动门的网格和结点能组成哪些四边形?

2、在开(关)门过程中这些四边形是如何变化的?

3、你还发现了什么?

解决问题:

学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

当我们学习完本节知识后,其他问题就容易解决了。

(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)。

二、整体了解,形成系统。

本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

提出问题:

1、本章主要研究哪些特殊四边形?

2、从哪几方面研究这些特殊四边形?

解决问题:

学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形。

3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

(意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)。

三、个体研究、总结性质。

1、平行四边形性质。

提出问题:

在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

解决问题:

教师引导学生拖动b点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

在图形变化过程中,

(1)对边相等;

(2)对角相等;

(3)通过ao=co、bo=do,可得对角线互相平分;

(4)通过邻角互补,可得对边平行;

(5)内外角和都等于360度;

(6)邻角互补;

……。

指导学生填表:

平行四边形性质矩形性质正方形性质。

菱形性质。

梯形性质等腰梯形性质。

直角梯形性质。

(既属于平行四边形性质又属于矩形性质可以画箭头)。

按照平行四边形性质的探索思路,分别研究:

2、矩形性质;

3、菱形性质;

4、正方形性质;

5、梯形性质;

6、等腰梯形性质;

7、直角梯形的性质。

(意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)。

教师总结:

(意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)。

四、联系生活,解决问题。

解决问题:

学生操作电脑,观察图形、分组讨论,教师个别指导。

学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

四边形具有不稳定性,而三角形没有这个特点……。

(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)。

五、小结。

1.研究问题从整体到局部的方法;

2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

六、作业。

1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

针对教学内容、学生特点及设计方案,预计下列学习效果:

利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

八年级湘教版数学教案篇二十

1.重点:勾股定理逆定理的应用.

2.难点:勾股定理逆定理的证明.

3.疑点及分析和解决方法:勾股定理逆定理的证明方法,又是学生前所未见的,是运用代数计算方法证明几何问题,是解析几何中研究问题的方法,以后会逐步见到,这一点要让学生有所认识.

八年级湘教版数学教案篇二十一

教学目标:

1、复习巩固用2~6的乘法口诀求商,熟练掌握所学表内乘、除法的知识。

2、通过练习,提高学生的计算能力和检查能力,加强乘除认知结构的系统化,培养学生综合运用知识的能力。

教学重点:

查漏补缺,反馈出现的问题,提高学生的计算能力和检查能力。

教学难点:

加强乘除认知结构的系统化,培养学生综合运用知识的能力。

教法:

练习法。注重多样练习的设计。在练习中巩固新知,帮助学生进一步理解乘法的意义。

教学过程:

一、旧知巩固,引入新知。

1、谈话:我们学过了用2~6的乘法口诀求商。把你的收获在小组内交流一下。

2、完成教材“练习四”的第6题。

谈话:同学们都学会用乘法口诀求商了吗?出示情境图,试一试,算一算,你能得几个玩具?学生计算,教师巡视。

二、师生互动,探究新知。

1、完成教材“练习四”的第4题。

(1)谈话:6÷6等于几?5÷5等于几?

学生计算,交流结果。

提问:观察第1列,并想一想,这些除法算式有什么特点。有什么发现?

促使学生发现:被除数和除数相同,商是1。

你能写出几道像这样的算式吗?

(2)观察第2列。

2÷13÷16÷1。

让学生体会一个数除以1,结果还是这个数。

你能写出几道像这样的算式吗?

2、引导学生完成教材“练习四”的第7题。

提问:计算时你用的是哪句口诀?

3、引导学生完成教材“练习四”的第8题。

(1)出示题卡,请学生列乘、除法算式,并说明计算方法。

明确:两个乘数一样的时候。

你还能找出哪些只能算一个乘法算式和一个除法算式的口诀吗?

学生汇报:二二得四、三三得九等。

三、巩固迁移。

1、引导学生完成教材“练习四”的第9题。

出示第9题的表格,你从表格中获得了哪些信息?

学生看清表格,理解题意,思考解题方法。

2、引导学生完成教材“练习四”的第10题。

出示3个蘑菇房子的贴图。帮助小动物找家的游戏。教师谈话激趣。

3、引导学生完成教材“练习四”的第11题。

请学生把用同一句口诀计算估算式做上相同的记号,再独立完成后交流汇报。

4、引导学生完成教材“练习四”的第12题。

(1)仔细观察图,你了解到哪些信息?说给同桌听一听。

(2)怎样列式呢?同桌交流想法。

(3)汇报,教师板书列式。

四、课堂小结。

师:这节课我们复习了哪些知识?

八年级湘教版数学教案篇二十二

1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

将实际问题中的等量 关系用分式方程表示

找实际问题中的等量关系

有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________

从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

这 一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程_ _____________________。

学生分组探讨、交流,列出方程.

上面所得到的方程有什么共同特点?

分母中含有未知数的方程叫做分式方程

分式方程与整式方程有什么区别?

(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

本节课你学到了哪些知识?有什么感想?

八年级湘教版数学教案篇二十三

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

第一环节:相关知识回顾。

以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

【本文地址:http://www.xuefen.com.cn/zuowen/15187315.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档