教案的编写应该包括清晰的教学目标和详细的教学步骤。怎样编写一份科学、合理的教案是每一位教师都要思考的问题。推荐给大家一些优秀的教案范文,以便教师在教学过程中参考借鉴。
八年级湘教版数学教案篇一
1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
八年级湘教版数学教案篇二
加权平均数.
(二)内容解析。
学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平均数,体会权的意义、作用,并进一步体会平均数是刻画一组数据集中趋势的重要的统计量,是一组数据的“重心”.
教科书设计了以招聘英文翻译为背景的实际问题,根据不同的招聘要求,各项成绩的“重要程度”不同,从而平均成绩不同,由此引入加权平均数的概念.权的重要性在于它能够反映数据的相对“重要程度”.为了更好地说明这一点,教科书设计了“思考”栏目和例1,从不同方面体现权的作用,使学生更好地理解加权平均数,体会权的意义和作用.
基于以上分析,本节课的教学重点是:对权及加权平均数统计意义的理解.
二、目标和目标解析。
(一)目标。
1.理解加权平均数的统计意义.
2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力.
(二)目标解析。
1.理解权表示数据的相对“重要程度”,体会权的差异对平均数的影响,会计算加权平均数.
2.面对一组数据时,能根据具体情况赋予适当的权,并根据得到的加权平均数对实际问题作出简单的判断.
三、教学问题诊断分析。
加权平均数不同于简单的算术平均数,简单的算术平均数只与数据的大小有关,而加权平均数则还与该组数据的权相关,学生对权的意义和作用的理解会有困难,往往造成数据与权混淆不清,只会利用公式,而不知加权平均数的统计意义.
本节课的教学难点是:对权的意义的理解,用加权平均数分析一组数据的集中趋势.
四、教学支持条件分析。
由于教学重点是对加权平均数意义的理解,可以用电子表格excell来辅助计算加权平均数,同时加深对权意义的理解.
五、教学过程设计。
(一)创设情境,提出问题。
通过已有的统计学方面的知识,我们知道当收集到一些数据后,通常用统计图表整理和描述这些数据,为了进一步获取信息,还需要对数据进行分析,小学时我们学习过平均数,知道它可以反映一组数据的平均水平.本节我们将在实际问题情境中,进一步探讨平均数的统计意义,并学习中位数、众数和方差等另外几个统计量,了解它们在数据分析中的作用.
师生活动:阅读章引言.
设计意图:让学生回顾统计调查的一般步骤,了解本节的大致内容,体会数据分析是统计的重要环节,而平均数等统计量在数据分析中起着重要作用.
问题1一家公司打算招聘一名英文翻译,对甲、乙两名候选人进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:
应试者听说读写。
甲85788573。
乙73808283。
如果这家公司想招一名综合能力较强的翻译,该录用谁?录用依据是什么?
师生活动:学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.
设计意图:回顾小学学过的平均数的意义,为引入加权平均数作铺垫.
追问1:用小学学过的平均数解决问题2合理吗?为什么?
追问2:如何在计算平均数时体现听、说、读、写的差别?
师生活动:教师适时地追问,学生自主设计计算平均数的方法,教师收集整理学生的计算方法,并统一计算形式,讲解权的意义及加权平均数.
设计意图:追问1让学生理解问题2与问题1的有区别,问题2中的每个数据的“重要程度”不同,追问2让学生自主探究如何在计算平均数时体现的每个数据的“重要程度”不同,从而体会权的意义.
(二)抽象概括,形成概念。
八年级湘教版数学教案篇三
严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
八年级湘教版数学教案篇四
(2)会用工具画三角形的高、中线与角平分线;。
2.教学目标解析。
(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.
(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.
(3)掌握三角形的高、中线与角平分线的画法.
(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.
三、教学问题诊断分析。
三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.
三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.
三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.
八年级湘教版数学教案篇五
一、教学目标:
1.理解并掌握矩形的判定方法.
二、重点、难点。
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
三、例题的意图分析。
本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.
四、课堂引入。
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)。
八年级湘教版数学教案篇六
1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)。
求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:
1匹1.2匹1.5匹2匹。
3月12台20台8台4台。
4月16台30台14台8台。
根据表格回答问题:
商店出售的各种规格空调中,众数是多少?
假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
答案:1.(1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。
2.(1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。
八年级湘教版数学教案篇七
平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;
平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定。
1.两组对边分别相等的四边形是平行四边形。
2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;
矩形的对角线平分且相等。
八年级湘教版数学教案篇八
教学目标:
1、用丰富、生动的教学内容,激发学生学习兴趣,巩固用乘法宽口径求商。
2、经历探索乘、除法算式之间的关系,了解用乘法口诀求商的思路。
3、培养学生分析问题和解决问题的能力。
教学重点:
通过了解、尝试不同的算法,体会用乘法口诀求商的优点。
教学难点:
培养学生合理选择计算方法的能力。
教法:
实践探索法和演绎概括法。加强直观教学的同时,注重从具体到抽象的提升,初步培养学生抽象思维能力。
教学过程:
一、复习引入。
1、口算,说出口诀。
4×2=6×5=2×9=6×3=。
5×5=3×4=2×4=5×4=。
20÷4=35÷5=12÷3=10÷2=。
学生口算,说出得数,并说说计算时用的是哪句口诀。
2、导入新课。
师:上节课我们学会了用乘法口诀求商,这节课我们继续学习用乘法口诀求商中的新知识。
二、互动新授。
1、谈话:同学们,王师傅包子铺今天开张了,我们一起去看看吧。(出示例2图)。
(1)谈谈你从图中得到了什么信息。(观察并收集信息。)。
师:每屉蒸笼装4个包子,有6屉,你知道一共有多少个包子吗?(学生回答。)。
教师追问:为什么用乘法计算?怎样列式?(求一共有多少个包子,表示6个4相加和是多少,用乘法计算,列式是:4×6=24)。
师:我们在计算这道算式时用的是哪句口诀?(四六二十四)。
(2)教师提问:提出什么样的问题才能把这个算式转变成除法算式?
学生看图,改变题目,教师出示:一共有24个包子,每4个一屉,可以装多少屉?
怎样列式?(24÷4=6)。
你是怎样想的?用的是哪句口诀?(四六二十四)。
(3)师:还可以怎样问?(学生自由发言。)。
教师出示题目:一共有24个包子,可以装6屉,每屉装多少个?
怎样列式?(24÷6=4)。
你是怎样想的'?用的是哪句口诀?(四六二十四)。
2、探究乘、除法算式之间的关系。
师:观察黑板上的3道算式,你有什么发现?
学生用自己的语言描述发现的规律。(根据学生探讨的情况,给予积极评价。并且突出强调:乘、除法间的联系,要从算式的变化和算理上理解。)。
3、出示一道口诀,让学生写出三道算式。
三六十八。
根据学生的交流,教师重述:一个乘法算式可以转换成两个除法算式,相应的问题可以变成求其中的一个乘数。这三个数,其中两个数相乘等于一个数,反过来,两个数相除又等于另一个数。
三、巩固拓展。
1、让学生独立完成教材第19页“做一做”的第1题。
先让学生说一说题意,再计算。计算后,同桌互相说一说,怎样想出商。
2、让学生独立完成教材第19页“做一做”的第2题。
让学生观察每组中的3道题,想一想:怎样很快求出各题的商,每到题的口诀各是什么。
3、让学生独立完成教材“练习四”的第5题。
让学生根据小朋友参加“二人三足”游戏的情境写出乘法算式和除法算式。练习时,注意让学生口述图意,提出问题,再写出算式。
交流方法。请学生说一说除法算式的实际含义,并说出,用哪句口诀想商。根据乘法口诀想商,加深对乘、除法关系的了解。
四、课堂小结。
师:这节课你学习了哪些知识?
学生自由发言。
教师小结:
这节课我们在复习用乘法口诀求商的同时,还发现了乘法和除法之间的联系,每一组算式里的三个数,其中两个数相乘等于一个数,反过来,两个数相除又等于另一个数,这就是我们过去学过的乘法算式里和除法算式里各部分之间的关系。找到这样的关系,我们在计算除法时就可以想乘法算除法了。
八年级湘教版数学教案篇九
1、了解方差的定义和计算公式。
2、理解方差概念产生和形成过程。
3、会用方差计算公式比较两组数据波动大小。
重点:掌握方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式。
(一)知识详解:
方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即。
给力小贴士:方差越小说明这组数据越稳定,波动性越低。
(二)自主检测小练习:
1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;
乙组:7891011121112。
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?
(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即用来表示。
(一)例题讲解:
金志强1013161412。
提示:先求平均数,然后使用公式计算方差。
(二)小试身手。
1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:
甲:7.8.6.8.6.5.9.10.7.4。
乙:9.5.7.8.7.6.8.6.7.7。
经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。
1、求下列数据的众数:
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
方差公式:
提示:方差越小,说明这组数据越集中。波动性越小。
每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。
1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。
如果根据这些成绩选拔一人参加比赛,你会选谁呢?
必做题:教材141页练习1.2;选做题:练习册对应部分习题。
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
八年级湘教版数学教案篇十
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.
将实际问题中的等量 关系用分式方程表示
找实际问题中的等量关系
有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)
如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________
从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。
这 一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程
分式方程与整式方程有什么区别?
(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好
本节课你学到了哪些知识?有什么感想?
八年级湘教版数学教案篇十一
1.重点:勾股定理逆定理的应用.
2.难点:勾股定理逆定理的证明.
3.疑点及分析和解决方法:勾股定理逆定理的证明方法,又是学生前所未见的,是运用代数计算方法证明几何问题,是解析几何中研究问题的方法,以后会逐步见到,这一点要让学生有所认识.
八年级湘教版数学教案篇十二
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
算术平方根的概念。
根据算术平方根的概念正确求出非负数的算术平方根。
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
1、提出问题:(书p68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式=a (x0)中,规定x = .
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。
4、例1求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69练习1、2
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
p75习题13.1活动第1、2、3题
八年级湘教版数学教案篇十三
教学目标:
1、复习巩固用2~6的乘法口诀求商,熟练掌握所学表内乘、除法的知识。
2、通过练习,提高学生的计算能力和检查能力,加强乘除认知结构的系统化,培养学生综合运用知识的能力。
教学重点:
查漏补缺,反馈出现的问题,提高学生的计算能力和检查能力。
教学难点:
加强乘除认知结构的系统化,培养学生综合运用知识的能力。
教法:
练习法。注重多样练习的设计。在练习中巩固新知,帮助学生进一步理解乘法的意义。
教学过程:
一、旧知巩固,引入新知。
1、谈话:我们学过了用2~6的乘法口诀求商。把你的收获在小组内交流一下。
2、完成教材“练习四”的第6题。
谈话:同学们都学会用乘法口诀求商了吗?出示情境图,试一试,算一算,你能得几个玩具?学生计算,教师巡视。
二、师生互动,探究新知。
1、完成教材“练习四”的第4题。
(1)谈话:6÷6等于几?5÷5等于几?
学生计算,交流结果。
提问:观察第1列,并想一想,这些除法算式有什么特点。有什么发现?
促使学生发现:被除数和除数相同,商是1。
你能写出几道像这样的算式吗?
(2)观察第2列。
2÷13÷16÷1。
让学生体会一个数除以1,结果还是这个数。
你能写出几道像这样的算式吗?
2、引导学生完成教材“练习四”的第7题。
提问:计算时你用的是哪句口诀?
3、引导学生完成教材“练习四”的第8题。
(1)出示题卡,请学生列乘、除法算式,并说明计算方法。
明确:两个乘数一样的时候。
你还能找出哪些只能算一个乘法算式和一个除法算式的口诀吗?
学生汇报:二二得四、三三得九等。
三、巩固迁移。
1、引导学生完成教材“练习四”的第9题。
出示第9题的表格,你从表格中获得了哪些信息?
学生看清表格,理解题意,思考解题方法。
2、引导学生完成教材“练习四”的第10题。
出示3个蘑菇房子的贴图。帮助小动物找家的游戏。教师谈话激趣。
3、引导学生完成教材“练习四”的第11题。
请学生把用同一句口诀计算估算式做上相同的记号,再独立完成后交流汇报。
4、引导学生完成教材“练习四”的第12题。
(1)仔细观察图,你了解到哪些信息?说给同桌听一听。
(2)怎样列式呢?同桌交流想法。
(3)汇报,教师板书列式。
四、课堂小结。
师:这节课我们复习了哪些知识?
八年级湘教版数学教案篇十四
一、教学目标:(1)熟练地进行同分母的分式加减法的运算.
(2)会把异分母的分式通分,转化成同分母的分式相加减.
二、重点、难点。
1.重点:熟练地进行异分母的分式加减法的运算.
2.难点:熟练地进行异分母的分式加减法的运算.
3.认知难点与突破方法。
进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.
异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.
三、例、习题的意图分析。
1.p18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2.p19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.
第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.
(4)p21例7是一道物理的电路题,学生首先要有并联电路总电阻r与各支路电阻r1,r2,…,rn的关系为.若知道这个公式,就比较容易地用含有r1的式子表示r2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到r的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.
四、课堂堂引入。
1.出示p18问题3、问题4,教师引导学生列出答案.
引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?
3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?
4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?
五、例题讲解。
(p20)例6.计算。
[分析]第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.
(补充)例.计算。
(1)。
[分析]第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.
解:
=
=
=
=
(2)。
[分析]第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.
解:
=
=
=
=
=
六、随堂练习。
计算。
(1)(2)。
(3)(4)。
七、课后练习。
计算。
(1)(2)。
(3)(4)。
八、答案:
四.(1)(2)(3)(4)1。
五.(1)(2)(3)1(4)。
【本文地址:http://www.xuefen.com.cn/zuowen/15414001.html】