概率论与数理统计论文(汇总16篇)

格式:DOC 上传日期:2023-11-26 21:20:17
概率论与数理统计论文(汇总16篇)
时间:2023-11-26 21:20:17     小编:GZ才子

写一份总结是对我们过去所做努力的肯定和回顾。写一篇好的总结需要抓住核心要素、突出重点,并注重文字的准确性和简洁性。这些优秀的演讲稿,给我们带来了很多启发和思考。

概率论与数理统计论文篇一

统计与概率主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的决策。为了更好地了解世界,我们必须学会处理各种信息。所以在教学中我认为统计教学组织和概率教学组织的主要策略应有以下几点:

1、关注学生对现实生活的经历。

再如,在统计量中,描述数据集中趋势的特征的一个重要的概念就是“平均数”,如何来组织这个内容帮助儿童理解它的含义就显得很重要了。如向学生呈现这样一道题:小明身高是1.4米,他根本不会游泳。那么他到一个平均水深是1.2米的游泳池中,会不会有生命危险?“小强所在的班里平均身高是1.5米,而小明所在班级的平均身高是1.4米。能不能判断小强和小明谁更高些?”呈现这样的实际问题,让学生通过多次辨析来真正理解平均数的意义。

2、增强学生再数学生活中的体验。

在教学过程中,我们不能把一些统计知识简单的当作一些表示概念的词汇记忆,或当作一种程序性的技能来反复操作,而应尽可能的组织活动增加学生在学习过程中的体验。如:对低年级的学生来说,可以通过列表的方式来体验统计的意义。又如:统计图表的制作不只是一个简单的技术问题,而是在制作过程中体验和理解统计图表意义的问题。不是一个简单的数据堆砌过程,而是一个对数据理解的过程,例如让学生调查:调查一下自己5岁到10岁之中,每年体重变化情况。这样一个问题,对学生来说就不是一个简单的数据获得的问题,更重要的是如何处理这些数据的问题。一个简单的方法,就是将这些数据列成一张统计表。然而,这些数据被这样罗列后,只是反映了事实,似乎还是不能反映出某种规律性的趋势来。于是,学生可能就会去进一步尝试,他们可能会尝试将这些数据用条形统计图的方式呈现出来。

这样的图虽然直观的反映了在不同年段的体重的不同,但还是不能反映某种变化的规律性的趋势。怎么办?学生肯就会再去进一步尝试,将这些数据用其他方法,就这样,在一定的时间段内,自己体重的变化就会用更直接的方法呈现出来,那就是折线统计图。

所以,我们在讲统计一课时,应注重学生的日常经验,从学生的生活出发,让学生在经历一个具体情景中活动中去体验,去认识。去构建。

1、亲历随机环境,消除学生错误认知。

概率的一些观念,往往只能靠多次的亲身体验才能形成。由于学生过去接触的主要是确定性事物,对于不确定性事物的认识非常有限,因此学生都存在着一些概率方面的错误认知。消除学生的错误认知,建立正确的概率知觉是概率教学的一个重要目标。要实现这一目标,必须让学生亲自经历对随机现象的探索过程。在概率教学的初始阶段,教师应通过真实数据、活动和直观模拟,创造情景以鼓励学生检查、修改或更正他们对概率的信念和常见错误的认识。首先,可以引导学生猜测结果发生的概率,然后让学生亲自动手进行实验,收集实验数据,分析实验结果,并将所得结果与自己的猜测进行比较,必要时可以建立概率模型,并与实验结果联系起来。学生在此过程中尽管将自己的最初猜测、实验结果和概率理论进行比较,这将有利于促进他们修正自己的。错误经验,建立正确的概率直觉。其次,对于学生的一些回答,教师不能仅仅简单地判断其对错,而应该深究学生回答的理由,因为即使是正确的答案,其背后也可能是错误的理由。为了消除学生的错误认知,教师应该要求学生说出理由,并有针对性地适时帮助学生,使其建立正确的概率认识。

2、合理选择素材,丰富学生生活经验。

运用概率的对象大多来源于生活,其教学自然也不能脱离生活实际,教学中教师可以对教材进行二次开发,选择较为贴近生活实际的素材,为学生提供问题的实际背景,这样不但有助于学生对相关知识的理解,还能让学生感受数学在生活中的应用价值,丰富他们的生活经验。例如,生活中有些商家经常举行“摇奖”活动,如只要购物满百元,就可以通过转动转盘来进行兑奖,即只要转动转盘,指针指在哪个区域内,就是几等奖。通过对这类问题的讨论和研究,学生可以了解到一等奖的可能性最小,不但加深了对可能性的认识,也了解了商家搞活动的用意,也为形成随机意识提供了素材和可能性。

3、灵活操作实验,提高活动思维含量。

在概率教学中,常常需要做实验,让学生在活动中体验很重要,而活动前、活动中、活动后的思考更重要。没有思考,学生对概率知识的理解只是一种机械的模仿或照搬,涉及的也只是知识的表层,甚至有些学生一无所获。只有经过学生主动地从个体出发对新知进行深层次的思考,才能达到掌握知识本质的目的,并运用到实践中去。教师不应该把“做实验”变为“讲实验”,而应该逐步引导学生去体验、去思考,这样才能丰富学生对随机事件的体验,更深刻地领会概率的思想方法,并在不断的思考、探索中得到思想的升华,进一步把握住概率的本质。

概率论与数理统计论文篇二

摘要:

在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。

关键词:

概率论,概率论的发展与应用正文。

说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。

那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。

通过这次讨论,开始形成了概率论当中一个重要的概念—————数学期望。这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。

二、概率论的发展。

概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是18出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理,这是一部继往开来的作品。这时候人们最想知道的就是概率论是否会有更大的应用价值?是否能有更大的发展成为严谨的学科。

概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。19,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。

三、概率论在生活中的应用。

(1)概率论在保险中的应用。

保险是一项使投保人和保险公司能够同时取得利益的活动,投保人缴纳一定数额的保险金,如果遇到投保范围内的问题时,保险公司将支付投保人数倍甚至更多的金额,能够在一定程度上帮助投保人解决问题。若是投保人没有出现问题时,其缴纳的保险金是不予以退还的。一般情况下,投保人遇到问题的概率是相对定的,那么保险公司就需要确定合理的赔率来保证公司的盈利,这就涉及到了概率的应用。

(2)概率论在投资中的应用。

俗话说,不要把鸡蛋放在一个篮子里面。同样,这个原理也可以运用于投资中,在购买股票的时候,购买多支股票的要优于购买一支股票,这里可以用概率的方法进行解析。

(3)概率论在交通设施中的应用。

随着城市人口的增加,城市车辆数目的增多,也就出现越来越严重的交通问题。怎么样合理安排路线,成为了交通设施建设中的一个重要环节。而某一时间,某一路线,某一位置会面临怎样的交通状况,是可以运用概率的方法计算出来,正确的处理各种可预测的交通问题,就能为人民的生活出行营造一个舒适的环境。

(4)概率论在密码学中的应用。

随着电脑的`普及,电子文件所占的比重越来越大,在广泛使用的同时,怎样保证其安全性和可靠性呢?这就出现了常见的加密文件。加密文件中密码的存在极大的加强了文件的安全性,采用加密措施的文件,其被破译出来的可能性很小。这一点可以通过概率计算的方法加以验证。

(5)概率论在市场营销中的应用。

生产商,销售商,经济活动中的各个角色在从事一定的经济活动中都需要考虑这一活动所带来的结果,通俗的来说,就是要考虑其所得的利益。那么,销售商在进货的过程中就需要考虑到市场的需求量,产品的价值等综合问题,以获取最大的利益。随着社会的不断发展,概率论与数理统计的知识越来越重要。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。

总之,在科学技术日新月异的今天,概率论将在各个行业发挥不可替代的作用。

概率论与数理统计论文篇三

:软件工程在计算机技术取得进展后也飞速发展,但是项目进行中仍会在人为和环境因素的作用下遇到风险。以人工智能的几个应用融入到软件风险管理中,会产生不可小觑的作用。

:软件风险;人工智能;融入;

计算机技术已经历经六十余载的历程,取得了突飞猛进的进步发展。计算机的多领域运用推动社会各行各业换代升级,改变人们的衣食住行。计算机软件系统是信息化的不可或缺的部分。软件工程(softwareengineering)在软件开发中有重要地位。“软件工程”在fritzbauer、boehm、ieee和《软件工程术语》等代表性定义中概括讲为:“指导软件开发和维护的工程性学科,它以计算机科学理论和其他相关科学的理论为指导,采用工程化的概念、原理、技术和方法进行软件的开发和维护,把经过时间考验且证明是正确的管理技术和当前能够得到的最好的技术方法结合起来,以较少的代价获得高质量的软件并维护它。”但是软件和生物一样会经历孕育、诞生、成熟、衰亡的生存期历程,包括软件定义、软件开发和运行维护管理三个过程。

就如从古至今没有几个人一生一帆风顺,软件的生存期过程也可能出现影响软件目标或是可能造成重大损失的事件,即为软件风险。风险是过程中可能发生的事,这个可能性用风险概率描述。降低软件风险发生的可能性,使这个概率接近于0,对加快开发进度、降低预算、避免严重后果并减少损失有莫大的帮助。

人工智能(artificialintelligence,ai)主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。人工智能的长期目标是实现人类水平的人工智能,实现机器智能。当前,几乎所有的科学与技术的分支都在共享着人工智能领域所提供的理论技术。以人工智能中的几种应用融入软件风险管理的评估、控制等实施步骤,可提高风险管理的效率。

2.1基于专家系统领域。

专家系统(expertsystem)是顾名思义基于知识的系统,依靠人类专家的知识建立体系结构,存储问题求解所需的知识,根据人工智能问题求解技术,模拟人类专家求解问题时的求解过程求解所涉及领域的各种问题,达到具有与专家同等解决问题能力的水平。在对风险识别阶段,从项目的具体情况入手找出可能会存在的风险。一些软件项目或是因为对自身的情况挖掘不足,停在理解,或是缺乏经验过于乐观,便为未预料到的情况埋下了隐患。若是以来自软件工程领域的专家的知识背景参与到识别风险中,可为决策提供专业性建议。人工智能的专家系统将风险问题与多位专家专业性知识共同组成的知识库中各个规则的条件进行匹配,并把被匹配规则的结论存放到综合数据库中,得到最终的分析结果。专家系统能够将自身的推理过程为用户解释清楚,使用户在询问中理解自己的过程,会比多数软件开放者独自的思考结果更加可靠。

2.2基于数据挖掘。

数据挖掘(datamining)能从大量数据中通过算法搜索挖掘出隐藏于其中的深层次的、未知的、有潜在价值的信息知识。在风险识别以后需要进行分析何时何处风险会发生,会产生怎么样的后果。风险分析常采用成本模型、判定分析、网络分析等方法,数据挖掘可以为这些分析方法提供更多的数据方面的支持。虽然传统统计分析技术基于完善的数学理论和高超的技巧,预测的准确度也可以达到人们的预期要求,但是对使用者也提出了与之难度相对应的高要求。数据挖掘是一次延伸扩展,在降低对使用者的`门槛的同时,也通过数据评估后的相应的数据库更简单便捷得到相应的功能。步骤的简便化换来的是使用者的低操作失误率,这样便提高风险分析的准确率。

2.3基于语义web。

语义web(semanticweb)以让web上的信息能够快速被机器所理解,从而实现web信息的自动处理,以适应web信息资源的快速增长,更好地为人类服务为目的。软件工程中的开发者目前要解决的问题数量庞大,用户对软件的质量和开发周期的要求更加苛刻,软件开发人员多数面临开发期长、成本高、质量不达标的问题,这是一个领域共同的问题。软件开发人员在通过网络搜寻与软件风险相关联的事物时,牵扯了语义web一方面的应用“互联网信息发布与搜索”,通过对内容的标注与分析从而克服了关键词查询的歧义性,提高了查询的精度。语义web给人的是一个所有数据“无缝”式连接的网络,一个滴水不漏的网络。

2.4基于机器人领域。

机器人(robot)是一种具备和生物相似的智能能力,具有高度灵活性的自动化机器。工业机器人按照人的规定的程序工作,自身不能对程序调整,软件的批量生产的流水线一般由这种类型的机器人实施。在风险控制阶段,一些可能会对人体造成未知伤害的操作可有初级和高级智能机器人(具有感觉,识别,推理和判断能力,区别在于是否能根据外界环境,在一定范围内自行修改程序)实施。项目的风险经常依赖于外部因素发生,需要跟踪监控,定期对风险进行重新评估,这个步骤便可交给智能机器处理,节省工作人员的时间。

2.5基于模式识别技术。

模式识别(patternrecognition)是用数学、物理和技术的方法实现对模式的自动处理、描述、分类和解释。通过遥感图像识别软件在实际运作时的异常表现点,为风险评估提供部分依据。指纹识别应用于开发人员的日常工作中,便于监督每位成员的操作,也有助于后期落实到具体人员的责任,督促每位参与者谨慎研究,减少人为造成风险。语音识别加快软件开发过程中的信息处理,加快软件开发进度。

在众多项目实践中获得的风险管理经验和教训,软件工程项目中的风险是客观存在的,不可能完全避免的。人工智能的研究仍在不断进行,一旦人工智能在软件工程领域的应用得到飞跃性突破,软件风险概率必然会有所下降,软件工程项目的发展会更加顺畅。

概率论与数理统计论文篇四

婚姻状况:未婚民族:汉族。

培训认证:未参加 身高:168cm。

诚信徽章:未申请 体重:

人才测评:未测评。

我的特长:

求职意向。

人才类型:在校学生。

应聘职位:家教:,兼职教师:

工作年限:1职称:

求职类型:兼职可到职日期:随时

月薪要求:1000以下希望工作地区:广州,广州,。

工作经历。

家教起止年月:-03~-08。

公司性质:所属行业:

担任职位:

工作描述:

离职原因:

志愿者经历。

教育背景。

毕业院校:广州大学。

最高学历:硕士获得学位: 毕业日期:-07

概率论与数理统计论文篇五

早在2500年以前,儒家代表人物孔子把教育内容分为德行、言语、政事、文学四科,其中以德行为根本。而德育方法由不同层次的方法构成的,特别是方法论层次上的德育方法,如因材施教法。既然不同的学生自身的特点不同,那么在教学中就应采用不同的教育,我们所提出的分层次教学思想,就源于孔子的因材施教。

近年来,随着教育改革的深入,本科教育从精英化向大众化进行转变,高等院校招生规模大幅度地增加,医科院校入校学生的数学基础和学习能力参差不齐。而大学生由于其专业对概率与数理统计知识的要求不同,其学习目标和态度不尽相同,这就使得大学生对该课程的需求有了进一步的分化;同时由于不同学生的数学基础和对数学的兴趣爱好也不尽相同,对数学学习的重视程度和投入有很大差别。在长期的教学实践中我们深刻地体会到,为了在有限的课堂教学时间内尽可能地满足各层次学生学习的需要,满足各专业后续课程学习的前提下,最大程度地调动学生的学习积极性,必须推行分层次教学,提高数学教学的质量[1,2]。

自1995年国家教委立项研究“面向21世纪非数学类专业数学课程教学内容与课程体系改革”以来,对于数学教育在大学教育中应有的作用,国内数学教育界逐渐认识到,我国高等院校的规模水平、专业设置、地区差异、师资力量、生源优劣都相去甚远。而随着我国高等教育大众化趋势的步伐加快,这些差距到21世纪更加凸显,分层次教学法的提出必然是大学数学教学的规律。这也是我们在进行大学数学分层次教学研究时的一个基本出发点。我校在概率论与数理统计的教学实践中提出分层次教学,是在原有的师资力量和学生水平的条件下,通过分层次教学,充分满足各专业各水平不同层次学生的数学素质的要求,最大限度地挖掘学生的潜能,引导学生发挥其优势,使每个学生都能获得所需的概率统计知识,同时能够充分实现学校的教育功能和服务功能,达到教书、育人的和谐统一[3]。

我校是一所医学院校,早期的概率统计教学常常采取“一刀切”、“齐步走”的教学方法,统一教学大纲、教学实施计划、教学方法、考核要求,并未针对数学基础的不同采取不同方法,这造成基础好的学生“吃”不够,基础差的学生“吃”不了,课程结束后并未达到理想的教学效果。

概率论与数理统计有别于其他学科,理论性和应用性都很强,这就决定了教师在教学中的参与和学生的自主学习都必不可少。因此,课堂教学中一方面要以学生为主体,以学为中心,另一方面要发挥教师的主导作用,积极组织、引导学生,促进学生更好地学习。

高等教育具有大众化、多样化,本质上讲应该是个性化的。而素质教育的最大特点之一是要面向全体学生,挖掘每个学生的潜力,发挥每个学生的个性特长,提高全体学生的素质和能力[4]。但是由于扩招,新生素质呈下降趋势,即使在我校,在校学生由于受遗传、家庭、学校、社会环境等因素的影响,其水平差异、层次差异也很明显,即具有层次性。而分层次教学则承认学生的个体差异,在教学过程中针对不同层次学生的不同个性、不同的数学基础和学习能力以及不同专业设计不同层次的教学目标,根据不同的教学内容,运用不同的教学方法和教学手段,从而使学生在自己原有基础上进行合理地学习,在基础知识和应用能力方面得到充分发展,先后达到教学大纲的要求[5]。

3.1层次划分。

3.1.1按专业不同进行划分根据各专业对概率统计知识的不同要求,采用不同的教学大纲,确定不同类别学生所必须掌握的知识点。目前我们面对生物医学工程专业开设《概率论与数理统计》,教材采用同济大学主编的《概率统计简明教程》,在教学过程中提出"强化理论,增加实例,适当应用"的教学指导思想,重在培养学生随机思维能力和提高统计素养,为今后解决一些涉及概率知识的医学工程随机模型打好基础;面向药学与生物技术专业开设《概率论与数理统计》,教材采用第二军医大学主编的《医药数理统计方法》,教学中提出“淡化理论,增加实例,强调应用”的教学指导思想,在该专业的教学中加强了统计知识的学习,重在统计方法的讲解上,通过教学使学生具有较强的随机数据分析和应用统计软件的能力;面对临床医学、预防医学、医学检验、医学影像、高原医学、核医学等专业我们开设《军事医学统计学》,教材由我校统计学教研室主编,教学过程中强调统计的“适用性”,重在要求学生军队卫生统计学的相关内容,理解医学统计学中的重要名词概念,能正确区分资料类型;而面对其余专业开设《概率论与数理统计》、《趣味概率论》选修课,旨在让更多的医学生了解概率论基础知识以及统计方法,为后续课程打好基础。

3.1.2根据学生的数学基础进行划分由于概率论与数理统计的学习与高等数学知识的掌握程度有显著关系,因而我们在教学过程中根据高等数学的成绩,按程度将同一专业学生划分为a,b,c三个层次。但由于目前受同一专业的课程安排情况、教室数量以及教师人数等条件的限制,我们只能要求教师在同一班次教学中采取相应的各种措施,在授课内容的重新组织和授课方式上多下功夫。

a层次:此类学生学习勤奋,喜欢数学,数学基础扎实,智商和情商均很高,爱动脑、勤动手,自学能力强,将概率论与数理统计看成一门“我要学”的课程,自我约束能力强,成绩优秀。

b层次:此类学生智商较高,对数学无所谓喜欢或不喜欢,将其看成一门“要我学”,只是需要被考核的课程来看,主动学习能力不够,数学基础知识不够扎实,成绩中等。

c层次:此类学生通常表现不喜欢数学,对概率论与数理统计学习的自信心不足,数学基础知识和逻辑思维能力较差,学习无自觉性,学习成绩差。

3.2分层次教学。

3.2.1教学过程根据各教学层次制定切实可行的教学大纲,严格按照教学大纲,制定教学计划、选用教材、实施分层次考核,根据分层次教学大纲,不断扩充教学内容,提高教学质量。同时,概率统计课程尽量被安排在相同的时间上课,这使得任课教师能够在课后及时交流进度、切磋教学中出现的问题,以便形成良好的风气和习惯。

为了提高学生的学习兴趣,在教学内容上要求直观、生动,尽量多的介绍概念的实际背景和方法的实际应用。

a层次:约占总人数的15%,根据本层次学生的特点,在完成本科教学的基础上,增加某些数学内容,使学生能更深入地掌握概率与统计理论知识,培养数理思维能力和逻辑推理能力。并根据不同知识点提出实际问题,引导学生思考,达到知识应用的拓展。

b层次:约占总人数的75%,针对该类学生,教师重点在于提高课堂教学质量,让学生牢固掌握课程标准中所要求掌握的知识。

c层次:约占总人数的10%,对此类经常无法跟上教学任务的学生,在课堂教学和批改作业后,我们安排辅导教师统一进行习题讲评,采取课后答疑、网上答疑相结合的方法,及时解决学生在学习上的困难。

每次课后均有作业让学生完成,以达到巩固和提高。作业分三个内容:一是基础类(c层次),主要是对基本概念的理解、方法的运用;二是综合类(b层次),含基础类和综合性作业;三是提高类(a层次),主要为综合性练习和实际应用问题的解决。

3.2.2考核形式由于学生分为3个不同层次,为达到更大程度挖掘优生潜力,激励中等生,鼓励差生,我们对该课程的成绩构成进行改革,其中卷面成绩占70%,30%为平时成绩。平时成绩由教师控制,根据作业完成、课堂回答问题等情况打分。

3.3利用现代化信息技术分层次教学。

随着现代化信息技术的发展,网络已成为现代化教学的一种手段。由于授课时数有限,很多学生不满足于课堂上与教师的面对面交流,而希望课后能与教师做更多的互动,以得到学习上的帮助。为此,我们从以下三个方面对分层次教学进行辅助:

3.3.1开设专业站为搭建起教与学双方的桥梁,更好地让教师与学生进行沟通,我们于2002年在校园局域网开设了数学教学网站,包括《概率论与数理统计》课程的文字、图片、声音及视频等资料,为学生学习专业知识和建模提供平台,运行良好。所有的课程均上传于ftp以及本网站的教学专区,方便学生查阅、学习,并建有留言交流,帮助学生学习的'反馈和老师及时掌握学生的学习情况。同时含专业软件,如matlab7.0、matlab2007、lingo8.0、lindo6.0和spss13.0,完全满足教学需要,效果显著。学生可以通过网站了解该门课程的相关情况,包括:授课教师基本情况、课程标准、教学实施计划等。同时增加有关概率统计应用方面的网页链接,为学生深入学习该门课程搭建桥梁。

3.3.2建立试题库为考察学生对该课程的学习情况,对概念的理解、方法的应用程度,达到最终掌握概率与统计相关知识的目的,我们建立了质量较高的试题库。通过多年的教学实践,不断完善、调整,已经能够基本满足教考分离的考试模式。试题库中的试题数量大(授课学时50学时,试题库含1500道题),题型多样(含单选、多选、填空、判断、分析等题型),试题紧密围绕知识点展开,按难度系数从0.1到0.9划分为9个等级,可针对不同层次的学员进行考试命题。题库由专人负责管理和维护,试题库的设置保证考卷能客观、全面地考察学员的学习效果。对每次考试试卷均进行难度、可信度等分析。通过对多班次考试成绩分析,结果表明本课程考试的效果好,可信度较高。

3.3.3建设网络课程为了更好地帮助学生学习,我们于2008年建设《概率论与数理统计》网络课程。主要包含两大板块:课程配置和教学组织。课程配置中包含多媒体课件、电子教案、网络教材、视频;教学组织中包含网上作业、教师解答、学生通过自行组卷、老师批改等进行自主练习。通过网络课程可以让a类学生学得更深、更精,b类学生掌握基础知识更扎实,而对于在课堂上不能及时掌握知识的c类学生可以再次学习,更好掌握基本内容、基本方法。

通过5年来的教学实践,本着"以学生为主体,教师为主导,以知识应用为目的"的教学思想,我校在本科生《概率论与数理统计》课程中施行分层次教学法已经初步收到了较好的效果。首先在分层次教学中,作为主导者,教师本身素质也得到了提高:同一个教学班次分3个层次,不同层次学生水平差异较大,这对教师的讲授能力提出挑战,需要针对本班次各层次制定教课的内容,并采用灵活多变的教学方式进行知识的讲解;其次,通过分层次教学,作为主体的学生,在教师的协助与督促下,学生的学习潜力得到开发,不同层次学生自主获取知识和应用知识的能力得到明显提高,数理思维能力和逻辑推导能力得到发展。近3年来我校共组织113队(本科生337人)参与全国大学生数学建模竞赛,获得全国一等奖13项,二等奖12项;重庆市一等奖47项,二等奖16项的优异成绩,位居重庆市高校前列,得到全国组委会、重庆市教委、重庆市赛区和学校领导的高度肯定。

我们认为通过《概率论与数理统计》课程分层次教学的进行,有利于学生个性化的发展,是一种值得推广的教学模式,也是一种适应社会改革与进步的举措,我们对加强大学数学课群的整体建设、规范化管理做了积极的探索和努力,为今后全面提高概率统计,以及大学数学的教学质量提供了科学的依据,奠定了坚实的基础。

1高等学校工科数学课程指导委员会(本科组).关于工科数学系列课程教学改革的建议:数学与教材研究。高等教育出版社,1995.

2刘黎,等。分层次培养:理念与实践。辽宁教育研究,2004,5:48~50.

3郭斯,罗海鸥。高校文化素质教育分层推进模式的思考与实践。高校探索,2004,3:78~80.

4裘哲勇。高校数学分层次教学的研究与实践。国际教育工程,2005,3:315~318.

概率论与数理统计论文篇六

纵观新课标人教版初中数学统计与概率章节。笔者始终感觉用键盘问题做数学模拟实验的教学载体。我们发现初中数学模拟实验求概率的设计与应用可从以下角度思考和探索。

初中数学,模拟实验,求概率。

纵观新课标人教版初中数学统计与概率章节,笔者始终感觉用键盘问题做数学模拟实验的教学载体,学生探究热情低调,究其原因主要是缺乏农村学生数学生活化的体验。通过几年尝试教学与改进,我们发现初中数学模拟实验求概率的设计与应用可从以下角度思考和探索。

2、广泛性。避免以点代面,全盘考虑,分点试验。让抽样结果尽可能反映是按研究对象的共性特征。

3、随意性。每次实验方案的实施不提前预设,围绕方案任意活动,并直接获得需要的数据。

由于随机事件的结果具有不可预测性,往往解决相关实际问题难以从根本上把握。分清初中数学模拟实验的适用条件,是进行有效设计和准确应用的关键通过对模拟实验相关事件的综合分析,以及与列举法求概率相关事件的对比,我们不难发现模拟实验求事件的概率适用条件包括每次实验的所有可能结果不是有限个或每次实验的各种结果发生的可能性不相等。

1、确定设计方案(如投飞镖、做记号、数数量、抛硬币、掷骰子、转转盘、等)。

2、拟定统计栏目(总数、频数、频率)。

3、统计相关数据,计算频率与数据规律分析。

在做大量重复试验时,可事先根据概率要达到的精确度确定数据表中频率保留的数位。计算频率一般保留两位或三位小数。

4、估计事件概率,获得最有价值的数据(用频率估计概率)。

通常用频率估计出来的概率要比数据表中的频率保留的数位要少,一般要求的概率精度达到一位小数就可以了。

概率论与数理统计论文篇七

在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。

概率论,概率论的发展与应用正文。

说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。

那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。

通过这次讨论,开始形成了概率论当中一个重要的概念——数学期望。这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。

概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是1812年出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理,这是一部继往开来的作品。这时候人们最想知道的就是概率论是否会有更大的应用价值?是否能有更大的发展成为严谨的学科。

概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。

(1)概率论在保险中的应用。

保险是一项使投保人和保险公司能够同时取得利益的活动,投保人缴纳一定数额的保险金,如果遇到投保范围内的问题时,保险公司将支付投保人数倍甚至更多的金额,能够在一定程度上帮助投保人解决问题。若是投保人没有出现问题时,其缴纳的保险金是不予以退还的。一般情况下,投保人遇到问题的'概率是相对定的,那么保险公司就需要确定合理的倍率来保证公司的盈利,这就涉及到了概率的应用。

(2)概率论在投资中的应用。

俗话说,不要把鸡蛋放在一个篮子里面。同样,这个原理也可以运用于投资中,在购买股票的时候,购买多支股票的要优于购买一支股票,这里可以用概率的方法进行解析。

(3)概率论在交通设施中的应用。

随着城市人口的增加,城市车辆数目的增多,也就出现越来越严重的交通问题。怎么样合理安排路线,成为了交通设施建设中的一个重要环节。而某一时间,某一路线,某一位置会面临怎样的交通状况,是可以运用概率的方法计算出来,正确的处理各种可预测的交通问题,就能为人民的生活出行营造一个舒适的环境。

(4)概率论在密码学中的应用。

随着电脑的普及,电子文件所占的比重越来越大,在广泛使用的同时,怎样保证其安全性和可靠性呢?这就出现了常见的加密文件。加密文件中密码的存在极大的加强了文件的安全性,采用加密措施的文件,其被破译出来的可能性很小。这一点可以通过概率计算的方法加以验证。

(5)概率论在市场营销中的应用。

生产商,销售商,经济活动中的各个角色在从事一定的经济活动中都需要考虑这一活动所带来的结果,通俗的来说,就是要考虑其所得的利益。那么,销售商在进货的过程中就需要考虑到市场的需求量,产品的价值等综合问题,以获取最大的利益。随着社会的不断发展,概率论与数理统计的知识越来越重要。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。

总之,在科学技术日新月异的今天,概率论将在各个行业发挥不可替代的作用。

概率论与数理统计论文篇八

首先是极限。极限在数一中还是占着很大的比重,考试的只要考查方式就是求极限,还有就是一些单调有界定理的使用。我们要充分掌握求不定式极限的种种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;其次就是极限的应用,主要表现为连续,导数等等,对函数的连续性和可导性的探讨也是考试的重点,这要求我们直接从定义切入,充分理解函数连续的定义和掌握判定连续性的方法。

虽然导数是由极限定义的,然而真正在考试的过程中,我们求一个函数的导数时,我们并不会直接用定义去求,更多的是直接从求导公式中去求一个函数的导数。导数的考查方式主要还是和其它的知识点相结合,很少直接给你一个函数让你求导数。例如不等式的证明,函数单调性,凹凸性的判断,二元函数的偏微分等等。换句话说,导数是一个基础。

中值定理一般会两年至少考一次,多是以证明题的方式出现,而且常常和闭区间上的连续函数的性子相结合,以与罗尔定理为重点。

积分与不定积分是考试的重中之重,尤其是多元函数积分学更是每年的必考题型,平均一年会出两道大题,而且定积分、分段函数的积分、带绝对值的函数的`积分等种种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,固然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。对于曲线积分和曲面积分,考查方式以格林公式和高斯公式的应用为主,大家一定要注意格林公式和高斯公式的使用条件,考试的过程中往往会在这里设置陷阱。这两部分内容相对比较零散,也是难点,需要记忆的公式、定理比较多。

微分方程中需要熟练掌握变量可分散的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无限级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。

数学远没有大家想象中的那么难,只要大家充分掌握住这些重点,根据自己的情况有针对性的复习会到达很不错的效果,并且在有限的时间内复习数学,大家必须明确,在完成这个阶段的复习之后,自己会到达一个什么样的高度。相信经过有计划有目标的复习,每个同学都可以使自己的综合解题能力有一个质的提高,从而在最后的考试中考出好的成绩。

概率论与数理统计论文篇九

概率论与数学分析是数学的两个不同分支,数学分析是确定性数学的典型代表,概率论则是随机数学的典型代表。由于两者所研宄的方向不同,故它们的发展道路大相径庭,但是在各自的发展过程中二者却又紧密地结合在一起,数学分析的发展为概率论奠定了基础,而概率论中随机性、反因果论也逐渐滲透到数学分析当中,推动着数学分析的发展。研宄概率论与数学分析两者之间的相互关系,并寻绎概率论在解决数学分析中某些比较困难的问题的方法、思想,是很有意义的。

1.数学分析对概率论的渗透与推动。

1933年,苏俄数学家柯尔莫哥洛夫以集合论、测度论为依据,导入了概率论的公理化体系,概率论得以迅猛发展,在其迅猛发展的道路上,数学分析的思想与方法随处可见。

1.1集合论与概率论的公理化体系。

由于数学的研究对象一般都是具有某种性质或结构。世纪数学分析的严密化过程当中培育出来的,两者之间是源和流的关系;又由于勒贝格积分建立了集合论与测度论的联系,进而形成了概率论的公理化体系;因而集合论对概率论的滲透,可视为微积分对概率论的一次较有力的.推动。

数学分析中主要有黎曼积分和勒贝格积分两种。黎曼积分处理性质良好的函数时得心应手,但对于级数、多元函数、积分与极限交换次序等较为棘手的问题时,常常比较困难。勒贝格积分的出现,使黎曼积分遇到的难题迎刃而解,微积分随之进化到了实变函数论的新阶段。有了勒贝格积分理论以后,集合测度与事件概率之间的相似性便显示出来了。不仅如此,测度论中的几乎处处收敛与依测度收敛,实质上就是弱大数定律与强大数定律中的收敛。1933年,苏俄数学家柯尔莫哥洛夫,建立了在测度论基础上的概率论的公理化体系2,统一了原先概率的古典定义、几何定义及频率定义纷争不一的局面。他建立的公理化体系,具备了独立性、无矛盾性、完备性的公理化特征,确定了事件与集合、概率与测度的关系,使集合论加盟概率论。概率论在坚实的公理化基础上,已成为一门严格的演绎科学,取得了与其他数学分支同等的地位,并通过集合论与其他数学分支密切地联系着。

1.2傅立叶变换与特征函数傅立叶级数是数学分析中十分有效的工具。事实上,不仅是傅立叶级数,还有傅立叶积分、傅立叶变换等等也都是数学分析中的重要工具。它们除了在数学分析领域内发挥着重要的作用之外,也已滲透到了概率论领域当中。其中,把傅立叶变换应用于分布函数或密度函数,就产生了所谓的“特征函数”于是,对于处理独立随机变量和与随机变量序列的问题,就显得十分方便了。

在数学分析中有如下定理:

正是由于概率论运用了傅立叶变换的这些相关知识,构造和引进了特征函数,使多维随机变量分布、极限分布研宄更便捷,从而把概率论的理论研宄推进一个崭新的阶段。

1.3雅可比行列式与随机变量函数的分布在数学分析当中,我们所接触的函数大多是显函数,但除了显函数外,也常会遇到另一种形式的函数一隐函数,尤其是隐函数组。为了确定所给方程组的隐函数组是否存在,德国数学家雅可比在偏微分方程的研宄中,引进了“雅可比行列式”对此问题给予了解决。同样,在概率论中,应用雅可比行列式j,可以一下子解决多维随机变量(x,)的函数zu,)的概率分布问题。

1.4同阶数量级与极限定理大数定律与中心极限定理是概率论研宄的中心问题,

也是数理统计中的理论基础。由于两者讨论的都是随机变量序列的极限问题,这与数学分析中的数列极限、函数列极限极为相似且联系十分密切,因此,对于数学分析中的同阶数量级方法在解决概率论的大数定律与中心极限定理的有关问题中同样是适用的。

1.5函数与随机变量、分布函数。

函数是数学分析中最基本的概念之一,当它被引入概率论领域以后,概率论中的许多问题便得到了简化,从而使概率论进入了一个崭新的阶段。

随机变量与分布函数是概率论中最为重要的两个概念,并且都是函数,其中,随机变量x为集函数,分布函数为实函数。在函数关系的对应下,随机事件先是被简化为集合,继之被简化为实数,随着样本空间转化为数集,概率相应地由集函数约化为实函数。以函数的观点衡量分布函数,分布函数的性质是十分良好的:单调有界、可积、几乎处处连续、几乎处处可导。此外,随机变量x的数字特征、概率密度与分布函数的关系、连续型随机变量x的概率计算等等,同样运用了微积分的现成成果。

随机变量与分布函数的导入,从理论上结束了概率的古典时代。概率论的公理化、体系化的动力源,不仅是集合论和测度论,更重要、更基本的,仍然是数学分析那一套理论。概率论形成体系后的快速发展,不妨视作概率论向着微积分的靠拢与回归。

尽管随机变量x的导入方式有一定的自由度,不具备唯一性;尽管随机变量x的取值需服从一定的概率分布;尽管分布函数可以视为集函数,可以描述任何种类的随机变量x的随机性质,但是在函数的范畴内,它们的本质是一致的,既然都是函数家族的成员,就具备了确定性和因果律。

综上可见,数学分析的思想方法,已经滲透到了概率论的各个方面。没有微积分的推动,就没有概率论的公理化与系统化,概率论就难以形成一门独立的学科。

2概率方法在数学分析中的应用。

从上可知,在数学分析的渗透与推动作用下,概率论得到了飞快地发展。与此同时,由于概率论本身所具有的特征,使得数学分析中某些比较困难的问题得以高效简捷性地解决。

2.1数学期望与不等式不等式是数学分析中的重要内容,在数学分析中不等式问题经常碰到,例如级数不等式、积分不等式等等。数学分析中可以使用多种方法进行证明这些不等式,可是证明起来却相当不容易。然而倘若巧妙地运用概率论中数学期望性质,数学分析中的不等式问题便可以很轻易地得到证明。

概率论中数学期望的性质:

2.2中心极限定理在数学分析中的特殊作用。

概率论的中心极限定理为棣莫弗-拉普拉斯中心极限定理,林德贝格-勒维中心极限定理,林德贝格中心极限定理、李雅普诺夫中心极限定理[3]。这4个中心极限定理的建立不仅为概率论的发展开辟了广阔的前景,同时使概率论与数学分析保持着密切地联系。

极限是数学分析的基础,微积分中一系列重要的概念和方法,都与极限关系密切,数学分析中有一些复杂的极限问题,用通常的数学分析方法是难以计算的,但应用概率论中的中心极限定理则可较简便地得以解决。

由此可见,概率论不仅能解决随机的数学问题,同样也可以解决一些确定的数学问题,是一门同时包含着确定性和非确定性二重品格的特殊的数学学科。

将本文的word文档下载到电脑,方便收藏和打印。

概率论与数理统计论文篇十

概率论与数理统计是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。

二、本课程的目的和任务。

本课程是工科以及管理各专业的基础课程,课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在各领域中的具体应用。课程的任务在于使学生初步掌握处理随机现象的基本理论和方法,培养他们解决某些相关实际问题的能力。

三、本课程与其它课程的关系。

学生在进入本课程学习之前,应学过下列课程:

高等数学、线性代数。

这些课程的学习,为本课程提供了必需的数学基础知识。本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。

四、本课程的基本要求。

概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。通过对本课程的学习,学生应熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。具体要求如下:

(一)随机事件和概率。

1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和运算。

2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率计算。

3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、贝叶斯公式,并能应用这些公式进行概率计算。

4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。

5、掌握伯努利概型及其计算。

(二)随机变量及其概率分布。

1、理解随机变量的概念。

2、理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。

3、掌握(0-1)分布、二项分布、泊松分布、正态分布、均匀分布和指数分布。

4、会求简单随机变量函数的概率分布。

(三)二维随机变量的联合分布。

1、了解二维随机变量的概念。

2、了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律及其性质,了解二维连续型随机变量的联合概率密度及其性质,并会用它计算有关事件的概率。

3、了解二维随机变量的边缘分布和条件分布。

4、理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。

5、会求两个独立随机变量的简单函数的分布。

(四)随机变量的数字特征。

1、理解数字期望和方差的'概念,掌握它们的性质与计算。

2、掌握二项分布、泊松分布和正态分布的数学期望和方差,了解均匀分布和指数分布的数学期望和方差。

3、会计算随机变量函数的数学期望。

4、了解矩、协方差和相关系数的概念与性质,并会计算。

(五)大数定律和中心极限定理。

1、了解切比雪夫不等式。

2、了解切比雪夫大数定律和伯努利大数定律。

3、了解林德伯格一列维定理(独立同分布的中心极限定理)和棣莫佛-拉普拉斯定理(二项分布以正态分布为极限分布)。

1、理解总体、个体、简单随机样本和统计量的概念,掌握样本均值、样本方差及样本矩的计算。

2、了解分布、t分布和f分布的定义及性质,了解分布分位数的概念并会查表计算。

3、了解正态总体的某些常用统计量的分布。

(七)参数估计。

1、理解点估计的概念。

2、掌握矩估计法和极大似然估计法。

3、了解估计量的评选标准(无偏性、有效性、一致性)。

4、理解区间估计的概念。

5、会求单个正态总体的均值和方差的置信区间。

6、会求两个正态总体的均值差和方差比的置信区间。

(八)假设检验。

1、理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。

2、了解单个及两个正态总体的均值和方差的假设检验。

3、了解总体分布假设的x2检验法.

五、课程内容。

理论教学内容。

第一章随机事件及其概率。

1-1随机事件、样本空间。

1-2频率与概率。

1-3古典概型。

1-4条件概率。

1-5事件独立性。

第二章随机变量及其分布。

2-1随机变量。

2-2离散型随机变量及其概率分布。

2-3连续型随机变量及分布函数。

2-4常用连续型分布。

2-5随机变量函数的分布。

第三章多维随机变量及其分布。

3-1二维随机变量。

3-2边缘分布。

3-3条件分布。

3-4相互独立的随机变量。

3-5两个随机变量函数的分布。

第四章随机变量的数字特征。

4-1数学期望。

4-3协方差、相关系数。

4-4矩、协方差矩阵。

第五章大数定律与中心极限定理。

5-1大数定律。

5-2中心极限定理。

6-1总体与样本。

6-2统计量与抽样分布。

第七章参数估计。

7-1点估计。

7-2点估计的性质。

7-3区间估计。

7-4正态总体参数的区间估计。

7-5单侧置信区间。

第八章假设检验。

8-1假设检验的基本概念。

8-2单个正态总体的参数检验。

8-3两个正态总体的参数检验。

8-4分布拟合检验。

实践教学内容(习题课)。

第一章、第二章、第三章配合课堂教学内容,每章安排一次习题课,第四章和第五章,第六章和第七章,第八章安排三次习题课,共六次,每次2学时。

六、教材与参考书。

1、教材。

2、主要参考书。

七、本课程的教学方式。

本课程有其独特的数学概念和方法,并大量向各学科渗透并与之结合成不少边缘学科,其教学方式应注重启发式、引导式,课堂上注意经常列举本课程在各领域成功应用的实例,增强同学的学习热情,讲授时应注意善于联系已学过课程的有关概念、理论和方法,使同学加快对本课程的基本概念、基本理论和基本方法的理解。

配合理论教学需要,在习题课中通过合适的例题和适当的讲解,使同学通过做题既加深对课堂讲授的内容的理解,又增强运用理论建立数学模型、解决实际问题的能力。

概率论与数理统计论文篇十一

答:我们看这样一个模型,这是概率里经常见到的,从实际产品里面我们每次取一个产品,而且取后不放回去,就是日常生活中抽签抓阄的模型。现在我说四句话,大家看看有什么不同,第一句话“求一下第三次取到十件产品有七件正品三件次品,我们每次取一件,取后不放回”,下面我们来求四个类型,第一问我们求第三次取得次品的概率。第二问我们求第三次才取得次品的概率。第三问已知前两次没有取得次品第三次取到次品。第四问不超过三次取到次品。大家看到这四问的话我想是容易糊涂的,这是四个完全不同的概率,但是你看完以后可能有很多考生认为有的就是一个类型,但实际上是不一样的。

先看第一个“第三次取得次品”,这个概率与前面取得什么和后面取得什么都没有关系,所以这个我们叫绝对概率。第一个概率我想很多考生都知道,这个概率应该是等于十分之三,用古代概率公式或者全概率公式求出来都是十分之三。这个概率改成第四次、第五次取到都是十分之三,就是说这个概率与次数是没有关系的。所以在这里我们可以看出,日常生活中抽签、抓阄从数学上来说是公平的。

拿这个模型来说,第一次取到和第十次取到次品的概率都是十分之三。下面我们再看看第二个概率,第三次才取到次品的概率,这个事件描述的是绩事件,这是概率里重要的概念,改变表示同时发生的概率。但是这个与第三次的概率是容易混淆的,如果表示的可以这样表述,如果用a1表示第一次取到次品,a2表示第二次取到次品,a3是第三次取到次品。

如果a表示第一次不取到次品,b表示第二次不取到次品,c表示第三次不取到次品,求abc绩事件发生的概率。第三问表示条件概率,已知前两次没有取到次品,第三次取到次品p(c|ab),第三问求的就是一个条件概率。我们看第四问,不超过三次取得次品,这是一个和事件的概率,就是p(a+b+c)。从这个例子大家可以看出,概率论确实对题意的理解非常重要,要把握准确,否则就得不到准确的答案。

答:几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,数学三、数学四的话虽然明确写在大纲里,还没有考。明年是否可能考呢?几何概率是一个考点,但不是一个考察的重点。我个人认为一是它考的可能性很小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的度量或者整个样本空间度量的比。这个度量的话指的是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。

何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做,我推测下次考的话,可能会难一点的。比如说用意项,面积可能用到定积分或者重积分计算,把概率和高等数学联系起来。

关于第二个问题,概率统计怎么复习,今年的考试分配很不正常,明年不会是这样的情况。我想明年数学一(统计)应该考一个八、九分的题是比较适中的。从今年考试中心的样题统计这一块是九分。数学三(统计)应该八分左右,统计这一块大家不要放弃,明年可能会考,分数应该是八、九分的题。至于复习,它的内容占了四分之一的样子。但是这一部分的题相对于概率题比较固定,做题的方法也比较固定,对考生来说比较好掌握,但这部分考生考得差,可能很多学校没有开这门课,或者开的话讲得比较简单,所以一些同学没有达到考试的水平。其实这部分稍微花一点时间就可以掌握了。主要就是这几块内容一是样本与抽样分布,就是三大分布搞清楚,把他们的结构搞清楚,把统计上的分布搞清楚。

然后是参数估计、矩估计、最大似然估计、区间估计、三种估计方法,三个评价标准,无偏性、有效性、一致性,重点是无偏性的考查,因为它是期望的计算,其次是有效性。一致性一般不会考,考的可能性很小。这三种估计方法重点也是前面两种,矩估计、最大似然估计,区间做了限制,考了很少,历年考试的`情况也就是代代公式。

最后一部分是假设检验这部分,这一部分我个人推测明年有可能考一个概念性的小题。一是了解u检验统计量、t检验统计量、卡方检验统计量,把这三个检验统计量的分布搞清楚。另外假设检验的思想和四个步骤了解一下就可以了。我想这部分考生少花一点时间,统计这个题是没有问题的,重点就是参数估计,就是三种估计方法,三个评价标准,重点在那个地方。

答:概率这门学科与别的学科是不太一样的,首先我建议这位同学你可以看一下教育部考试中心一本杂志,专门出了一个针对研究生考试的书,这个里面请我写了一篇文章,里面我举很多例子,你看了之后有一个详细复习方法。概率这门学科与概率统计、微积分是不一样的,它要求对基本概念、基本性质的理解比较强,有个同学跟我说高等数学不存在把题看不懂的问题,但是概率统计的题尤其文字叙述的时候看不懂题,从这个意义上来说同学平常复习时候,只要针对每一个基本概念,要把它准确的理解,概念要理解准确,通过例子理解概念,通过实际物体理解概念。例如:比如我们一个盒子一共有十件产品,其中三件次品,七件正品,我们做一个实验,每次只取一件产品,取之后不再放回去,现在我提两个问题:一个是第三次取的次品是什么事件,这个事件就是积事件,第一次没有取到次品,第二次没有取到次品,第三次是取到次品,求这么一个事件的概率,但是换一个问题,我说你求前面两次没有取到次品情况下,第三次取到次品的概率,这个就不是积事件了,我第二个问题是知道了前面两次没有取到次品,这个信息已经知道了,然后问你第三次取到次品概率是多少,这是条件概率,这个信息已经知道了,另外一个事件发生的概率,这叫条件概率,这是容易混淆的。还有绝对概率,拿我们刚才举的例子来讲,如果我让你求第三次取到次品是什么概率,那是绝对事件的概率,这和前面两个又不一样。我举这个例子提醒考生复习时候把这些基本概念搞清楚了,把公式把握了,这个就比较容易了。跟微积分比较起来这里没有什么公式,公式很少。所以我们把基本概念弄清楚以后,计算的技巧比微积分少得多,所以有同学跟我说,他说概率统计这门课程要么就考高分,要么考低分,考中间分数的人很少,这就说明了这种课程的特点。

4.概率的公式非常难背,有什么好方法吗?

答:背下来是基本的要求,概率的公式并不多,但是概率的公式和高等数学的公式相比,仅仅记住它是不够的,比如给一个函数求导数,你会做,因为你知道是求导数,概率问题,比如全概率公式,考试的时候从来没有哪一年是请你用全概率公式求求某概率,所以从分析问题的层面来说概率的要求高一点,但是从计算技巧来说概率的技巧低一些,所以我建议大家结合实际的例子和模型记它。比如二向概率公式,你可以这么记它,记一个模型,把一枚硬币重复抛n次,正面冲上的概率是多少呢?这个公式哪一个符号在实际问题里面是什么东西,这样才是在理解的基础上记忆,当然就不容易忘记了。

答:考试要注意,只有数学1和数学3的同学要考数理统计,按照以前考试数学1一般来说考三分之一分数的题,数学3是四分之一,但是仅仅是一个很例外的情况,数学1考了16分的数理统计,但是今年没有考这部分,今年考试这个地方的命题是有一点有失偏颇,我个人的看法为了避免这样的情况,所以这个地方一定要看,一般要考8分左右的题是比较合适的,到底考什么,我可以把这个范围缩的比较小,考这么几种题型,第一个是求统计量的数字特征或者是统计量的分布,统计量大家知道就是样本的函数,样本就是x1x2-xn,就是期望、方差、系方差,相关系数等等,求统计量的数字特征。第二个题型,统计量既然是随机变量,当然可以求统计量的分布,数学3是考了,数学3考了,所以这个地方也是重要的题型。其次第三种题型是参数估计,你要会求。要考你背两到三个区间估计的公式就可以了,所以为什么这个地方考的次数最多,每一种方法你都要会做。第四种题型就是对估计量的好坏进行评价,估计是无偏是有效的还是抑制的。20就考了一个大题。另外第五种题型就是假设间接这个地方,这么年以来只考过两次,而且从以来练习五年这一章是没有考,但是也正音连续五年没有考,我个人估测在这个上面考一个小题的可能是非常大的,我想同学们这部分花一点点时间看一看它,可能考一个小题,考一个什么题,就是把统计量写出来,你会不会把分布写出来,以填空的方式。另外一种考法,它的只对什么进行检验,对什么参数进行检验,你把统计参数写出来。第三种方法,设计一个问题,把架设检验的十个步骤做出来,第一个步骤是提出架设,第二步写出检验统计量。这个部分也不会出一个大题,应该是以小题的形式出现。

概率论与数理统计论文篇十二

婚姻状况:未婚民族:汉族。

培训认证:未参加身高:168cm。

诚信徽章:未申请体重:

人才测评:未测评。

我的特长:

求职意向。

人才类型:在校学生。

应聘职位:家教:,兼职教师:

工作年限:1职称:

求职类型:兼职可到职日期:随时

月薪要求:1000以下希望工作地区:广州,广州,。

工作经历。

公司性质:所属行业:

担任职位:

工作描述:

离职原因:

志愿者经历。

教育背景。

毕业院校:广州大学。

概率论与数理统计论文篇十三

考试内容:

多维随机变量及其分布、二维离散型随机变量的概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度、边缘概率密度和条件密度、随机变量的独立性和不相关性、常用二维随机变量的分布、两个及两个以上随机变量简单函数的分布考试要求。

1、理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。

2、理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件。

3、掌握二维均匀分布,了解二维正态分布、的概率密度,理解其中参数的概率意义。

4、会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布。

概率论与数理统计论文篇十四

小编根据以往的考试经验对于概率论与数理统计在做题方面主要容易出错的地方总结出以下几个方便。

(1)概念理解不清晰。

在做题的时候常常会分不清关系和事件之间的结构;

(2)题目理解的不透彻。

在做题时候对于题目意思的理解不够准确,往往会出现对于概率模型的搞错;

(3)不能熟练的应用公式去分析和计算。

很多考生在答题的时候,不能熟练的运用公式去证明分析和计算题目,出现此类问题往往是考生对于公式的定义和概念性质理解的还是不完全明白,当考生对于公式和定义理解越来越清楚时这些问题也就能够更好的去答题了。

概率论与数理统计论文篇十五

概率论与数学分析是数学的两个不同分支,数学分析是确定性数学的典型代表,概率论则是随机数学的典型代表。由于两者所研宄的方向不同,故它们的发展道路大相径庭,但是在各自的发展过程中二者却又紧密地结合在一起,数学分析的发展为概率论奠定了基础,而概率论中随机性、反因果论也逐渐滲透到数学分析当中,推动着数学分析的发展。研宄概率论与数学分析两者之间的相互关系,并寻绎概率论在解决数学分析中某些比较困难的问题的方法、思想,是很有意义的。

1.数学分析对概率论的渗透与推动。

1933年,苏俄数学家柯尔莫哥洛夫以集合论、测度论为依据,导入了概率论的公理化体系,概率论得以迅猛发展,在其迅猛发展的道路上,数学分析的思想与方法随处可见。

1.1集合论与概率论的公理化体系。

由于数学的研究对象一般都是具有某种性质或结构。世纪数学分析的严密化过程当中培育出来的,两者之间是源和流的关系;又由于勒贝格积分建立了集合论与测度论的联系,进而形成了概率论的公理化体系;因而集合论对概率论的滲透,可视为微积分对概率论的一次较有力的.推动。

数学分析中主要有黎曼积分和勒贝格积分两种。黎曼积分处理性质良好的函数时得心应手,但对于级数、多元函数、积分与极限交换次序等较为棘手的问题时,常常比较困难。勒贝格积分的出现,使黎曼积分遇到的难题迎刃而解,微积分随之进化到了实变函数论的新阶段。有了勒贝格积分理论以后,集合测度与事件概率之间的相似性便显示出来了。不仅如此,测度论中的几乎处处收敛与依测度收敛,实质上就是弱大数定律与强大数定律中的收敛。1933年,苏俄数学家柯尔莫哥洛夫,建立了在测度论基础上的概率论的公理化体系2,统一了原先概率的古典定义、几何定义及频率定义纷争不一的局面。他建立的公理化体系,具备了独立性、无矛盾性、完备性的公理化特征,确定了事件与集合、概率与测度的关系,使集合论加盟概率论。概率论在坚实的公理化基础上,已成为一门严格的演绎科学,取得了与其他数学分支同等的地位,并通过集合论与其他数学分支密切地联系着。

1.2傅立叶变换与特征函数傅立叶级数是数学分析中十分有效的工具。事实上,不仅是傅立叶级数,还有傅立叶积分、傅立叶变换等等也都是数学分析中的重要工具。它们除了在数学分析领域内发挥着重要的作用之外,也已滲透到了概率论领域当中。其中,把傅立叶变换应用于分布函数或密度函数,就产生了所谓的“特征函数”于是,对于处理独立随机变量和与随机变量序列的问题,就显得十分方便了。

在数学分析中有如下定理:

正是由于概率论运用了傅立叶变换的这些相关知识,构造和引进了特征函数,使多维随机变量分布、极限分布研宄更便捷,从而把概率论的理论研宄推进一个崭新的阶段。

1.3雅可比行列式与随机变量函数的分布在数学分析当中,我们所接触的函数大多是显函数,但除了显函数外,也常会遇到另一种形式的函数一隐函数,尤其是隐函数组。为了确定所给方程组的隐函数组是否存在,德国数学家雅可比在偏微分方程的研宄中,引进了“雅可比行列式”对此问题给予了解决。同样,在概率论中,应用雅可比行列式j,可以一下子解决多维随机变量(x,)的函数zu,)的概率分布问题。

1.4同阶数量级与极限定理大数定律与中心极限定理是概率论研宄的中心问题,

也是数理统计中的理论基础。由于两者讨论的都是随机变量序列的极限问题,这与数学分析中的数列极限、函数列极限极为相似且联系十分密切,因此,对于数学分析中的同阶数量级方法在解决概率论的大数定律与中心极限定理的有关问题中同样是适用的。

1.5函数与随机变量、分布函数。

函数是数学分析中最基本的概念之一,当它被引入概率论领域以后,概率论中的许多问题便得到了简化,从而使概率论进入了一个崭新的阶段。

随机变量与分布函数是概率论中最为重要的两个概念,并且都是函数,其中,随机变量x为集函数,分布函数为实函数。在函数关系的对应下,随机事件先是被简化为集合,继之被简化为实数,随着样本空间转化为数集,概率相应地由集函数约化为实函数。以函数的观点衡量分布函数,分布函数的性质是十分良好的:单调有界、可积、几乎处处连续、几乎处处可导。此外,随机变量x的数字特征、概率密度与分布函数的关系、连续型随机变量x的概率计算等等,同样运用了微积分的现成成果。

随机变量与分布函数的导入,从理论上结束了概率的古典时代。概率论的公理化、体系化的动力源,不仅是集合论和测度论,更重要、更基本的,仍然是数学分析那一套理论。概率论形成体系后的快速发展,不妨视作概率论向着微积分的靠拢与回归。

尽管随机变量x的导入方式有一定的自由度,不具备唯一性;尽管随机变量x的取值需服从一定的概率分布;尽管分布函数可以视为集函数,可以描述任何种类的随机变量x的随机性质,但是在函数的范畴内,它们的本质是一致的,既然都是函数家族的成员,就具备了确定性和因果律。

综上可见,数学分析的思想方法,已经滲透到了概率论的各个方面。没有微积分的推动,就没有概率论的公理化与系统化,概率论就难以形成一门独立的学科。

2概率方法在数学分析中的应用。

从上可知,在数学分析的渗透与推动作用下,概率论得到了飞快地发展。与此同时,由于概率论本身所具有的特征,使得数学分析中某些比较困难的问题得以高效简捷性地解决。

2.1数学期望与不等式不等式是数学分析中的重要内容,在数学分析中不等式问题经常碰到,例如级数不等式、积分不等式等等。数学分析中可以使用多种方法进行证明这些不等式,可是证明起来却相当不容易。然而倘若巧妙地运用概率论中数学期望性质,数学分析中的不等式问题便可以很轻易地得到证明。

概率论中数学期望的性质:

2.2中心极限定理在数学分析中的特殊作用。

概率论的中心极限定理为棣莫弗-拉普拉斯中心极限定理,林德贝格-勒维中心极限定理,林德贝格中心极限定理、李雅普诺夫中心极限定理[3]。这4个中心极限定理的建立不仅为概率论的发展开辟了广阔的前景,同时使概率论与数学分析保持着密切地联系。

极限是数学分析的基础,微积分中一系列重要的概念和方法,都与极限关系密切,数学分析中有一些复杂的极限问题,用通常的数学分析方法是难以计算的,但应用概率论中的中心极限定理则可较简便地得以解决。

由此可见,概率论不仅能解决随机的数学问题,同样也可以解决一些确定的数学问题,是一门同时包含着确定性和非确定性二重品格的特殊的数学学科。

概率论与数理统计论文篇十六

考试内容:随机变量、随机变量分布函数的概念及其性质、离散型随机变量的概率分布、连续型随机变量的概率密度、常见随机变量的分布、随机变量函数的分布考试要求。

1、理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。

2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(poisson)分布、及其应用。

3、了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用。

5、会求随机变量函数的分布。

三、多维随机变量及其分布。

【本文地址:http://www.xuefen.com.cn/zuowen/15412469.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档