当我们面临挑战和难题时,总结经验是一种非常重要的方法。了解读者的需求和背景,可以更好地选择合适的写作方式和表达方式。总结是难忘的回忆总能让人心生感慨,也使人更加珍惜眼前的一切。写总结之前,先梳理一下过去一段时间的工作和学习经历,做好准备。以下是小编为大家整理的一些总结范文,希望能够给大家带来一些启发。
的倍数的特征说课稿篇一
这部分内容是在学生掌握了倍数概念的基础上进行 教学 的。它是学好找因数、求最大公约数和最小公倍数的重要基础,还有利于学习约分、通分知识。因此,掌握能2、5的倍数的特征,对于本单元的内容具有十分重要的意义。
所谓预习就是学生在学习新知识前,通过自学对新知识有初步的认识,形成一定的知识表象,或激活一定的前期经验和已有知识基础。通过预习,学生可以复习、掌握一些旧有的知识,初步认识知识的构架和网络,为完成由旧到新、由浅入深、由简单到复杂、由具体到抽象的知识迁移奠定基础。也就是说,课前预习起到了一个承前启后的作用,为掌握新知识做好知识方面的准备。
通过预习,给学生提供了一个培养自学能力的舞台。预习时学生会努力搜集已有的知识和经验来理解、分析新知识,这个过程正是在锻炼学生自主学习、提出问题和分析问题的能力。久而久之,学生的自学能力将逐步提高。
这节课是先安排学生进行预习后再进行的,因为是刚开始实施预习后的课堂教学,所以之前我已经给学生安排了具体的'预习步骤.所以探究新知识的时候我从学生已掌握的知识点切入,让学生说出预习之后,所获得的知识。从而让学生自主学习、自主探究。讲完所有内容之后再进行反馈,让孩子们对自己昨天预习的内容进行修正,再进行自我评价,肯定学生学习的效果,从而提高学生预习的积极性。
知识目标:
1,使学生掌握2,5的倍数的特征。
2,使学生知道奇数,偶数的概念。
能力目标:
1,会判断一个数是不是2,5的倍数。
2,能举出生活中的数,再判断是奇数还是偶数。
3,培养类推能力及主动获取知识的能力。
情感目标:
培养学生预习的积极性。
教学重点:
掌握2,5的倍数的特征及奇数,偶数的概念。
教学难点:
1,掌握既是2的倍数,又是5的倍数的特征。
2,利用所学知识解决生活中的数学问题。
由于2、5的倍数的特征学起来易懂,因此在教学本课时,主要采用如下的教法和学法:
1, 布置预习,引导探究
先给学生布置一些预习任务,让孩子们先对这节课所学的内容有一定的了解,再带着问题听这节课。上课的时候再学生已有的知识基础上加以引导,探究这节课所学的内容。
2, 加强练习,强化反馈
学生汇报完所预习内容之后,让学生对自己的预习成果有一个反馈,让学生初步掌握预习方法。因为预习之后初步掌握了一些知识,课上再对这些知识进行探究,所以一些基础性的练习题就没有安排,练习题的难度稍微设计得高了,考虑到今后学习的需要,要求学生能够熟练运用能2、5的倍数的特征,因此在本课中设计了“生活中的数学”、“闯关我能行”等练习,来巩固新知识。
1,走进课堂,汇报 总结
因为是预习后的课,所以我直接问“昨天老师布置了预习作业,你都学会了什么”从孩子们掌握的知识切入,进行新授。让学生总结出2、5的倍数的特征,奇数与偶数的概念,以及既是2的倍数,又是5的倍数的特征。
2,尝试练习
检验学生预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。学生经过自己的努力初步理解和掌握了新的数学知识,要让学生通过做练习或解决简单的问题来检验自己预习的效果。既能让学生 反思 预习过程中的漏洞,又能让老师发现学生学习新知识时较集中的问题,以便课堂教学时抓住重、难点。因为是预习之后的课,所以练习题的难度比较高,安排了不同难度的练习题来巩固新知识。
3,设置下节课预习任务
设置下节课的预习任务,是进行下节课内容的铺垫,让孩子们按着一定的 方案 有 计划 、有目标地对下节课进行预习,以便下节课的教学活动。
的倍数的特征说课稿篇二
《3的倍数的特征》这节课是北师大版小学五年级上册第6、7页的内容。在学习本课之前,学生已经掌握了2、5的倍数的特征。
2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑。
1、理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数。
2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。
3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。
根据以上的目标,我确定了本课的。
使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
教法和学法。
根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:
1、复习,激趣导入。
2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。
3、采用让学生自主发现的学习方法。
3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。
一、复习导入:
为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。
下面的数,哪些是2的倍数?哪些是5的倍数。
1218202548607290。
让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。知道了2和5的倍数的特征,那么你想知道3的倍数有什么特征吗?从而引出课题。(板书:3的倍数的特征)。
(1)大胆猜想。
为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。
(2)猜想验证,体验新知。
由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。
出示百数表。
提问:你能在这些数中找出3的倍数吗?
仔细观察这些数,并和同桌讨论3的倍数有什么特征?
通过观察发现,个位数字和十位数字都没有什么规律,但是将各数位上的数字加起来,它们的和都是3的倍数。如:12,十位上的1和个位上的2加起来是3,正好是3的倍数。再如:27,十位上的2和个位上的7加起来的和是9,正好是3的倍数。
验证:用数小棒的方法和除法进行验证。
(3)归纳总结。
在学习操作验证完成后,我用充足的时间引导学生自己总结。最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
2、判断一个数是不是3的倍数的方法。
主要是为了让学生将学到的只是系统化,条理化。
三、巩固提高。
(1)至(3)题是对新知识的巩固。这样设计的目的是通过判断、填空等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)。
在自我评价,总结提高部分,我鼓励学生说说本节课你有什么收获,其实也是培养学生独立总结的能力。
在这节课的设计中,我注重了学生的认知规律,激发了学生的求知欲望,注意了学生的个性张扬,让学生独立思考,合作学习,创新精神得到了培养。努力为学生营造了愉快的学习氛围。
的倍数的特征说课稿篇三
这学期,我们学习了倍数特征,分别是2、3、5的倍数特征。我们先来复习一下吧。
2的倍数特征:个位上是2、4、6、8、0。都是偶数。
3的倍数特征:各位相加的和是3的倍数。
5的倍数特征:个位上是5或0。
通过我的查找,我还发现了4、6、7、8、9、11的倍数特征。
4的倍数的特征:
(1)十位数是奇数且个位数为不是四的倍数的偶数或十位数是偶数且个位数是四的倍数。
(2)若一个整数的末尾两位数能被4整除,则这个数能被4整除,即是4的倍数。
6的倍数的特征:
各个数位上的数字之和可以被3整除的偶数。
7的倍数的特征:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。
8的倍数的特征:
数字的末三位能被8整除的数。
9的倍数的特征:
任何正整数的9倍,其各位数字之和是9的倍数,如果继续将各位数字连加最后必然会等于9。
11的倍数的特征:
一种是:11的倍数奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是0或是11的倍数。
另外一种答案是:若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1。
日记:
昨天,我和奶奶去超市购物,奶奶一共选了3包洗衣粉(因为走得匆忙,所以只看清了洗衣粉单价是自然数。)收银员阿姨说一共76元。我用3的倍数特征验证,发现结果有问题:按3的倍数特征7+6=13并不是3的倍数。而洗衣粉的单价又是自然数,所以更不可能是76元。我将结果告诉收银员,收银员连忙道歉说共75元,单价25元,共3包。通过这件事,我明白了,数的倍数特征无处不在,哪里都能用到它。
的倍数的特征说课稿篇四
这部分内容是在学生掌握了倍数概念的基础上进行教学的。它是学好找因数、求最大公约数和最小公倍数的重要基础,还有利于学习约分、通分知识。因此,知道2.5、3的倍数的特征,对于本单元的内容具有十分重要的意义。
这部分内容主要涉及了集合思想,掌握集合思想可使数学问题更容易理解和记忆,不仅可以帮助学生掌握知识的本质,而且对于开发学生的智力,培养学生的能力,优化学生的思维品质,提高课堂教学的效果,都具有十分重要的意义。
本课我极大地发挥了学生的主体作用,让学生自主完成百数表的勾画,通过数据的分析对比,找出特征,最后加以验证得出结论。并将这一过程在整堂课中多次应用,充分地锻炼了学生自主学习意识和分析、总结的能力。
学生已经初步掌握了因数与倍数的概念,有一定的单双数的生活体验,所以学生对此部分知识有兴趣而且困难较少。学生通过这部分内容的学习,可以掌握2.5、3的倍数的特征。另一方面,有助于发展他们的抽象思维,提高学生自主获得新知识的自豪感。
五年级是小学阶段的一个转折点,五年级学生的身心成长、个性特点都对教学效果有很深的影响。通过分析学生可以为学生“量身定做”一堂优质课。我发现学生学习热情较高,但注意力不集中;讨论兴趣浓,但不善于合作;求知欲望强,但目的性较差。于是我在教学中设计贴近学生生活的鲜活材料来作为吸引学生的关注点,引导学生以目标为导向,实现精准合作。
根据学生分析,本节课我主要采用“自主探究,合作交流,汇报验证”等教学方法。通过创设生动的教学情景,激发学生的求知欲。学生在观察中发现,在探究中交流,在合作中归纳解决问题。
让学生经历了解目标、合作探讨、制定方案、分析判断、验证思考、总结归纳这一系列的过程。培养探索精神和合作意识体会分类的数学思想。
本节内容属于《数学课程标准》“数与代数”领域的内容。《课标》在此领域的具体目标中明确提出了“知道2,3,5的倍数的特征”。根据课标要求,以教师用书为参考我制定以下教学目标:
1、使学生通过自主探索掌握2.5的倍数的特征。
2、让学生经历观察、分析、抽象、概括的过程,培养学生抽象概括的思维能力。
3、通过自主探索与合作交流体验数学带来的快乐。
教学重点和难点:学生自主探究2.5的倍数特征的过程。
依据课标要求,针对我对教材的分析,结合学生的学习基础与经验,围绕着课堂教学目标我设计了以下教学活动:
第一环节:创设情境,导入新课
我们知道,一个数的倍数有无数个,如果随机给你一个数,有没有更好的方法来判断是不是2.5的倍数呢?有,如果这节课认真听,你肯定能掌握其中的奥秘。由此引出课题,这样不但大大地调动了学生学习积极性,而且顺其自然地把探索的问题抛给了学生,激起了学生探索的欲望。好的开始等于成功了一半。
第二环节:自主探究,发现规律。
《数学课程标准》指出:动手操作、自主探索、合作交流是学生学习数学的重要方式。数学教学是数学活动的教学。我在教学2的倍数的特征时,设计了如下环节:
第一步、圈找倍数先让学生在百数表内圈找出2的倍数。
第二步、发现规律让学生观察思考2的倍数有什么特征,让学生大胆的发表自己的想法。引导学生归纳出2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。
第三步、举例验证老师提问:刚才发现的规律是否能用于所有的自然数,学生的回答可能会各不相同。教师引导:适不适用只是我们的猜测,证明猜测对不对,我们要举例验证。怎么验证呢,举例末尾是0、2、4、6、8的数,也找一些末尾不是0、2、4、6、8的数,计算它们能不能被2整除,能被2整除,就是2的倍数。然后让学生进行验证。
第四步、根据学生的汇报,得出结论。个位是0、2、4、6、8的数是2的倍数。同时,教师给定研究范围:我们只在自然数范围内研究倍数。
第五步、通过学生总结出的2的倍数的特征,进一步总结出整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
这样的设计培养了学生数学思考与语言表达能力,初步建立猜想—验证———得出结论的数学思想,提高了自我反思意识。
教学5的倍数特征,让学生利用刚学的找2的倍数特征的方法来找5的倍数特征,有利于学生形成良好的学习品质。
对比观察,让学生观察百数表,找出2.5的倍数有什么共同点,通过学生观察可以得出个位是0的数既是2的倍数也是5的倍数。
第三环节:巩固练习,认知提高。
课后练习第1题、2题。
第四环节:课堂小结
“通过这节课你知道了什么?”“你还有什么困惑”“你还想知道什么”这三个小环节,总结跟反思这节课,为下面的内容打下伏笔。
总之,本节课设计以教师为导线,学生的独立思考、自主探索、个性化表达贯穿始终,教学目标明确,充分尊重了学生的主体地位,创设了以生为本的课堂,不足之处,望各位专家批评指正,谢谢大家。
的倍数的特征说课稿篇五
1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的`问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。
2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。
的倍数的特征说课稿篇六
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
会判断一个数能否被3整除。
三疑三探教学模式。
课件等。
一、设疑自探(10分钟)。
(一)基本练习。
1、能被2.5整除的.数有什么特征?
2、能同时被2和5整除的数有什么特征?
(二)揭示课题。
我们已经知道了能被2.5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)。
(三)让学生根据课题提问题。
教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)。
(四)出示自探提示,组织学生自探。
自探提示:
自学课本19页内容,思考以下问题:
2、能被2、3整除的数有什么特征?
3、能被2、3、5整除的数有什么特征?
二、解疑合探(15分钟)。
1、检查自探效果。
按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。
2、着重强调;
一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)。
1、学生质疑。
教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)。
四、运用拓展(11分钟)。
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
1、判断下列各数能不能被3整除,为什么?
72567951890111120373。
2.58115207210451008。
有因数3的数:()。
有因数2和3的数:()。
有因数3和5的数:()。
有因数2、3和5的数:()。
让学生说说怎么找的。
(三)全课总结。
1、学生谈学习收获。
教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。
2、教师归纳总结。
学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
的倍数的特征说课稿篇七
苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。
1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。
2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。
3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。
准备计数器教具和学具。
一、激活经验。
1.复习回顾。
提问:2和5的倍数有哪些特征?
回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)。
2.引入课题。
谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的.过程,探索、寻找3的倍数的特征。(板书课题)。
二、学习新知。
1.提出猜想,引导质疑。
引导:我们知道2的倍数,个位上是;5的倍数,个位上是5或o.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)。
许多同学认为,3的倍数可能是个位上是3.6.9的数。
质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)。
2.利用经验,组织探究。
(2)探索特征。
3.学生归纳,强化认识。
追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?
让学生读一读板书的结论。
强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。
4.阅读“你知道吗”。
启发:当你发现3的倍数的特征时,你对数学有什么感觉?
谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。
三、练习巩固。
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习五第8题。
4.做练习五第9题。
5.做练习五第10题。
四、课堂总结。
提问:今天的学习你又有什么收获和体会?
判断3的倍数的方法,和判断2.5的倍数不同在哪里?
的倍数的特征说课稿篇八
一、复习导入:
为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。
下面的数,哪些是2的倍数?哪些是5的倍数。
1218202548607290。
让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。知道了2和5的倍数的特征,那么你想知道3的倍数有什么特征吗?从而引出课题。(板书:3的倍数的特征)。
二、探究新知1、自主探究3的倍数的特征。
(1)大胆猜想。
为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。
(2)猜想验证,体验新知。
由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。
出示百数表。
提问:你能在这些数中找出3的倍数吗?
仔细观察这些数,并和同桌讨论3的倍数有什么特征?
通过观察发现,个位数字和十位数字都没有什么规律,但是将各数位上的数字加起来,它们的`和都是3的倍数。如:12,十位上的1和个位上的2加起来是3,正好是3的倍数。再如:27,十位上的2和个位上的7加起来的和是9,正好是3的倍数。
验证:用数小棒的方法和除法进行验证。
(3)归纳总结。
在学习操作验证完成后,我用充足的时间引导学生自己总结。最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
2、判断一个数是不是3的倍数的方法。
主要是为了让学生将学到的只是系统化,条理化。
三、巩固提高。
(1)至(3)题是对新知识的巩固。这样设计的目的是通过判断、填空等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)。
在自我评价,总结提高部分,我鼓励学生说说本节课你有什么收获,其实也是培养学生独立总结的能力。
在这节课的设计中,我注重了学生的认知规律,激发了学生的求知欲望,注意了学生的个性张扬,让学生独立思考,合作学习,创新精神得到了培养。努力为学生营造了愉快的学习氛围。
的倍数的特征说课稿篇九
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学习中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学习中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,而我从孩子们的学号为入重点,让孩子们判断自己的学号是否是3的倍数,并再次探究3的倍数特征,并且发现3的倍数和数字排列顺序的有关系。但和这个数的个位上的数字有关。使之所探究的问题是渐渐完整而清晰,而后我又组织孩子们用摆小棒的方法来探究和验证,这种层层递进环环相扣的方法,促使探究活动走向深入,让学生获得更大的发展。
3、课后反思使之完美。
这节课结束后,我感觉最大的缺憾之处,最后点选了的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而老练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得可持续发展的动力。
的倍数的特征说课稿篇十
片段回放:
(学生发现一个数是不是3的倍数,不能只看它的个位后)。
师:究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。
师:我们先来做个“火柴梗摆数”的游戏(小黑板出示实验表,如后略)。老师报一个数,同学们拿出相应根数的火柴梗,边摆边在表上记录你所摆的数。
(老师报数,学生在数位表上摆数、判断、师生交流,完成下表)。
“火柴梗摆数”实验表。
师:看着这份实验表,你有什么想说的吗?
生:我发现凡是用3根、6根、9根火柴梗摆出来的数字都是3的倍数。凡是用2根、4根、7根、8根火柴梗摆出来的数字都不是3的倍数。
师:真的吗?(学生再补充两个数用计算器验证)还有没有不同的发现?
生:我发现如果3根3根地增加火柴梗,那么原来火柴梗摆出来的数和现在火柴梗摆出来的数,要么都是3的倍数,要么都不是3的倍数。
生:比方说,2根火柴摆出的数都不是3的倍数,那么增加3根火柴,5根火柴摆出来的数也都不是3的倍数。
师:如果原来摆出来的数是3的倍数,那么增加3根火柴后……?
生:摆出来的数应该也是3的倍数。
师:照同学们这样说,接下来用多少根火柴梗摆出来的数应该是3的倍数?
生;12根火柴梗。
生:15根火柴梗。
…… ……。
生:只要火柴梗的根数是3的倍数,那么它摆出来的数都是3的倍数。
师:真是这样吗?怎么来验证呢?
生:随便挑一个数做实验试试。
(师生商议后,决定用21根火柴梗在头脑中模拟实验。结果发现21根火柴梗摆出来的数全部是3的倍数。)。
(生面有难色,师指着表中3根火柴梗这一行。)。
生:数字排列的顺序变了;组成数的大小变了,但组数用的火柴梗根数没变,始终是3根。
师:组数用的火柴梗根数没变就是组成的数的什么没有变?
生:火柴梗根数没变,就是组成数的数字之和也没变。
师:其它每行呢?是不是也有这样的规律?
生:是的。
师:那么,怎样判断一个数是不是3的倍数?同学们现在有没有新想法?
生:我觉得一个数是不是3的倍数,应该把这个数各个数位上的数字相加,如果相加的和是3的倍数,那么这个数就是3的倍数。否则,就不是。
生:各位上的数字和是3的倍数,这个数就是3的倍数。
(师板书:各位上的和是3的倍数,这个数就是3的倍数。并在“各位”下用红笔写下“个位”)。
师:“各位”什么意思?能不能换成“个位”?
生:各位是每一位,而个位仅指最后一位,两者的意思完全不同。
(生答略。)。
生:它们的特征都可以看作是它们的倍数?
师:有没有同学理解他的话?(全班同学摇头)你能具体说说吗?
生:0、2、4、6、8是2的倍数,0、5是5的倍数,那么2、5倍数的特征就与3的倍数的特征一样,可以写作:一个数的个位是2或5的倍数,这个数就是2或5的倍数。
师:讲得很好!同学们听懂了没有?(生点了点头)有了这个特征,同学们就可以便捷、快速地判断一个数是不是3的倍数。请同桌同学互相出题,考考你的同桌!
(同学自主出题,同桌相互挑战。教师巡视,组织几个学生汇报后,顺手在黑板上写下63992这个数。)。
师:63992是3的倍数吗?说说你的理由!
生:不是,因为6+3+9+9+2=29,29不是3的倍数,所以63992不是3的倍数。
生:2不是3的倍数,所以63992不是3的倍数。
(其它学生纷纷表示反对。)。
师(面对后一位同学):你能向大家解释你的想法吗?
生:我是这样想的,但不知道对不对?我先用火柴梗在数位表上摆出63992,然后依次在在万位上拿下6根火柴梗,在千位上拿下3根火柴梗,在百位上拿下9根火柴梗,在十位上拿下9根火柴梗,这样就只剩下2根火柴梗。由于3根3根地拿,原来火柴摆出来的数和现在火柴摆出来的数,要么都是3的倍数,要么都不是3的倍数。而2不是3的倍数,所以63992不是3的倍数。
师:有没有同学听清楚他的意思?谁来给同学们再讲一讲?
(同学复述略。)。
…… ……。
评析:众所周知,一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数是2的倍数,个位是0、5的数是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,只有所有数位上的数的和是3的倍数,那么这个数才是3的倍数。以往教学,教师更多的是看到前后两种特征思维着眼点的不同,因此,教学中往往刻意对比强化,凸显这种差异。
的倍数的特征说课稿篇十一
在学习这个内容之前,学生已经学习了2、5的倍数的特征。但是3的倍数的特征与钱不同,2、5的倍数的特征是看个数上的数字,而3的倍数的特征不再是看个位上的数字,而是看各位上的数字之和。在学习了2、5的倍数的特征的.前提下来学习3的倍数的特征很容易会跟2、5的一样。根据这一初步的认识冲突,在课堂上我采取了以下教学措施。
与教学“2、5的倍数特征”类似,我要求学生课前做好充分的预习工作:在附页的方格纸上写出1-100的数,找出3的倍数并涂上颜色,并观察发现有什么特征,如下:
复习引入,设置悬念。
出示:用3,5,6数字卡片摆成符合要求的三位数依次出示:
摆成2的倍数(学生回答356536并说原因)。
摆成5的倍数(学生回答365635并说原因)。
【设计意图:回顾2,5的倍数的特征】。
摆成3的倍数(学生回答563,653,356,536并说原因:个位上是3、6;有学生提出质疑,产生冲突)。
问:个位上是3,6或9的数是不是3的倍数?
学生验证,发现这四个数都不是3的倍数。
问:3的倍数是不是看各位上的数呢它到底有什么特征?
合作探究。
在100以内的数中,任意选取几个3的倍数的数,小组合作完成表格:
3的倍数有。
各数位上,数的和。
和是不是3的倍数。
12。
1+2=3。
是
汇报交流:你发现了什么?
得出结论:一个数各数位上数的和是3的倍数,这个数就是3的倍数。例如:54,因为5+4=9,9是3的倍数,所以54是3的倍数。
1,基础练习:
(1)判断下列数是不是3的倍数(4213426878)。
学生回答:例。
42是3的倍数,134不是3的倍数,
因为4+2=6,6是3的倍数,因为1+3+4=8,8-不是3的倍数。
所以42是3的倍数。所以134不是3的倍数。
(2)师生互动猜数游戏:老师说一个数,学生判断是否为3的倍数;学生说一个数,老师判断;同桌判断,男女生判断。
(3)在下面的方框里填上一个数字,使这个数是3的倍数。
2,有关于2,5,3的倍数的特征的比较,综合练习。
本节课能从认识冲突上找到突破点,再小组合作通过填写表格引导学生去发现3的倍数的特征,学生能够清晰的区分和判别3的倍数,并与2、5的倍数作比较,真正理解和辨别这几个数的倍数的特征,学生的掌握情况还是不错的。
的倍数的特征说课稿篇十二
兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。
本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。
教师准备 ppt课件 计数器 记录表
学生准备 百数表 计数器教学过程
师:用5,6,7组成一个没有重复数字的三位数,使这个数是2的倍数。说说什么样的数是2的'倍数。
师:能组成既是2的倍数又是5的倍数的数吗?为什么?
师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)
设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。
(学生可能会说个位上是3,6,9的数是3的倍数)
师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。
课件出示百数表。
师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。
(1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。
(2)引导学生斜着看,先看第一斜行的3,12,21。
学生分组讨论这3个数有什么特征。
汇报交流:第一斜行3的倍数各位上的数相加,和是3。
(3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?
设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。
(1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。
学生以小组为单位,用计数器拨出3的倍数,并填写记录表。
:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 (2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。
的倍数的特征说课稿篇十三
这节课新授知识较为简单,很适合让学生预习。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:1、观察5的倍数,想想这些数有什么特征?2、观察2的倍数,又有什么特征呢?一上课就小组交流这两个问题,同学们兴致高涨,足以看出预习效果是很好的。通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同学运用知识的能力欠佳,比如:写出5个奇数是这样写的:5、15、25、35、45.虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。
在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。
1、组成的数是偶数的有()。
2、组成的数是5的倍数的有()。
3、组成的数既是2的倍数、又是5的倍数的有()。
这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。
的倍数的特征说课稿篇十四
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。
“给孩子一个跳板,让他跳一下就能摘到最鲜美的果子”,在下次的教学中,我应该给学生更多探索的空间和出错的机会,这样才能让他们的数学思维更出彩,这也是新课程的目标。
3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究,本课注重引导学生经历探索的过程。上课开始先让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测:“各位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。
下面进入验证环节,先学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流这些数不一定都是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。于是进入到动手操作环节,在此基础上,利用计数器转移探索的方向,让学生用3颗算珠在计数器上任意摆数,得出结果:摆出的数都是3的倍数,到这里有几个学生显得很兴奋。随后用5颗算珠实验,发现摆出的数都不是3的倍数,到这里学生中已经有一些议论,他们都有了发现。为了让更多的学生看出其中的神奇,我将自主权交给了学生们,自己选择算珠的颗数进行了第三次实验,然后板书出每组的实验结果,从结果的数据中,学生们都很兴奋地发现了所用算珠的颗数是3颗,6颗,9颗,拨出的数都是3的倍数,每个数所用算珠的颗数,也是每个数各位上数的和。把算珠颗数抽象成各位上数的和,是理解3的倍数特征的关键。
“试一试”是教学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数。利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。可惜在这一点上,我很仓促地指着黑板上算珠颗数是4颗,5颗,7颗,8颗时,所摆出的数都不是3的倍数,直接告诉了学生,而没有让学生自己举出反例。随后设计了一系列习题,使学生得到巩固提高。
整节课只能说顺利地走了下来,对于教者我来说从中发现了自己教学上的不足之处,在今后的教学中,我将不断学习,及时总结,虚心请教,以进一步提高自己的教学业务水平。
的倍数的特征说课稿篇十五
教学过程:
(一)创设情境;。
生:哪些数宝宝,应该从2的倍数入口进?
师;“2的倍数”,指什么?
师:那么,怎样才能知道一个数是不是2的倍数?
生:用它除以2,只要是整数就可以了!
师:你们同意吗?数学王国有那么多数,我们一个一个的算行吗?
生:不行,太麻烦。如果我们知道2的倍数什么样就行了。
(二)探究新知。
师:怎样得到2的倍数。
生:2×1=2......
师:你能用列举法,有序的找出2的倍数,真不错,我给大家足够的时间,你能把它们都说完吗?(说不完)说不完说明2的倍数是无限的,四年级的知识掌握很牢固,你能找到100及100以内2的倍数吗?(能)那我们就先在1-100这一百个数中进行研究,看看2的倍数究竟有怎样的特征?认真听:(1)用列举法找出100及100以内2的倍数。(2)在百数表中标出100及100以内2的倍数并涂上颜色。任选一种,看哪组找的又对又快!
学生展示交流。
师:你用的哪种方法?
生:第二种。
师:为什么?
生:这种方法简单。
师:仔细观察,100及100以内2的倍数,仔细分析它的个位,再看看十位,有什么特征!
师:你的意思是十位上的数是什么都行,不固定是吗?
生;是,不一定。
师:既然十位上的数是什么都可以,那还用看十位吗?
生:不用。
师:既然不用看十位,那看那一位?
生:个位。
师:你们同意吗?
生:同意。【使学生初步体会2的倍数为什么只看个位,不看十位。】。
师:100及100以内2的倍数,它的个位,有什么特征!
生:个位上都是0、2、4、6、8的数。
师:你能说完整吗?
生:个位上都是0、2、4、6、8的数,是2的倍数。
师;谁能完整的说一遍。
生:个位上都是0、2、4、6、8的数,是2的倍数。
师:这只是我们的猜测,那我们能否举例验证一下?
生:(举例)5124(集体验证)5124÷2=2562。
师:每个同学分别写一个大于100的数,同位交换验证。(找2名学生展示)。
你们举的例子一样吗?(不一样)说明什么?
生:2的倍数的特征:个位是0、2、4、6、8的数。
练习:下列数中,哪些是2的倍数?
师:口55是2的倍数?
生:是。
师:还差一个数呢,你怎么看出来的?
生:只看个位,个位是5,所以不管百位是几,都不是2的倍数。
师:你们有不同意见吗?
生:13口呢?
生:可能是2的倍数,也可能不是。
师:为什么用上“可能”?
师:现在数字爷爷知道谁应该在双数路口也就是2的倍数入口进入,非常感谢大家。谁能在这里进入?(出示课件)。
生:12、2、26、8、58......
2、2的倍数为什么只看个位,认识奇数偶数。
师:课件2643:为什么不让我进入?
生:个位不是2、4、6、8、0,所以不能进入。
学生讨论交流。
师:谁来说一说,为什么不看十位呢?(学生不明白)。
师出事课件 千位 百位 十位 个位。
2 6 4 3。
师:十位的4表示什么?
生1:十位的4表示4个十。
生2:十位的4表示40。
师:40是不是2的倍数?
生:40是2的倍数。
师:十位如果是1呢,是不是2的倍数?
生:十位的1表示10。也是2的倍数。
师:十位是2呢?
生:十位的2表示20。也是2的倍数。
师:十位是3呢?(是)4呢,(是)5呢6、7、8、9呢?
生:不管十位是几都是2的倍数。
师:所以......
的倍数的特征说课稿篇十六
4、从课堂教学结构反思,课堂结构紧凑、合理,合理地安排教学活动,各部分衔接自然、流畅,时间长短适当,教学重点、难点突出,合理高效的教学结构安排并能恰当的组织材料,学习重点、难点。
5、从课堂的随机生成反思,对后进生解题的生成优待学习改进。
整节课实际就是让学生经历“观察——操作——讨论——验证得出结论——解决问题”的探究过程,实现课程、师生、知识等多层次的互动。整个教学力求把知识的传授、思维的训练、学习方法的指导、学习能力的培养、数学思想方法的渗透有机融为一体,同时还要充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,比如:让学生写电话号码,列举生活中的数等,使学生真正领略到数学就在我们身边,生活中处处有数学。反思本节课的教学,我也发现有许多环节处理极不得当,有待进一步改进。如学生提出最小的偶数是什么?其实我们没有必要在这个问题上花很多的时间,因为小学阶段我们只在0除外的自然数范围内研究倍数和因数。所以我们现在只能在这个范围内说最小的偶数是2。其他也不适于多说,以免让学生混乱。
我们知道,一个数的倍数有无数个,如果随机给你一个数,有没有更好的方法来判断是不是2、5的倍数呢?有,如果这节课认真听,你肯定能掌握其中的奥秘。由此引出课题,这样不但大大地调动了学生学习积极性,而且顺其自然地把探索的问题抛给了学生,激起了学生探索的欲望。二是紧密地联系学生的生活。本节课我充分利用了与学生生活密切联系的学号,使学生明白数学来源于生活,生活即是数学。我安排了“请学号是2的倍数的同学举起左手”、“请学号是5的倍数的同学举起右手”的练习,以及判断自己的学号“是不是2或5的倍数”的练习,这些练习内容使枯燥的数字练习变得生动了。这即巩固了学生对奇数和偶数意义的理解。又让学生对规律的运用更加灵活了,学生非常喜欢这样的形式。真正也让学生体会到了“数学源于生活,生活即数学”。
不足之处是:在如何有效地组织学生开展探索规律时,我认为猜想可以锻炼孩子们的创新思维,但猜想必须具有一定的基础,需要因势利导。在开展探索规律时,我先组织让学生猜想秘诀是什么?由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在“乱猜”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。
的倍数的特征说课稿篇十七
本节课的教学整体来说感觉良好。学生的主体作用在这节课中得到了充分的发挥,积极的思维、热烈的气氛等均给人以很大的感染,仔细分析,我认为这节课课的成功得益于以下几方面:
1、联系生活,培养学生学习数学的兴趣。
本节课在学生已学会找一个数的因数和倍数的基础上,我围绕“2、5倍数的特征”这一教学内容,从学生已有的生活经验出发,结合学生的认识规律,创设“老师和一名学生进行比赛,准确而迅速地判断一个数是2或5的倍数,其中有什么奥妙”的问题情境。从而引起学生的探求欲望,创设观察、操作、合作交流的机会;充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,比如:让学生写电话号码,列举生活中的数等,使学生真正领略到数学就在我们身边,生活中处处有数学。
2、让学生经历科学探索的过程。
3、通过平等对话实现师生互动、生生互动。
教师与学生是课堂生态系统中的两个主体因素。教师是学生的知心朋友,是学生的学习伙伴,学生是学习的主人。我在本节课的教学程中,通过师生互动、生生互动,努力让课堂教学不仅是学生学习知识的过程,而且是师生共同建构知识的过程,从而实现师生知识共享、情感交流、心灵沟通。整个课堂教学活动,给学生创设宽松的学习氛围,让学生始终感到课堂是一个学习知识的大家庭,任何不成熟的想法在共同的交流中是可以成熟的,让学生自觉地参与到解决问题的行列中。
4、精心选题,发挥习题的探索性和趣味性。
习题的设计力争在突出重点、突破难点、遵循学生认知规律的基础上,体现趣味性、基础性、层次性、灵活性、生活性。本节课我设计的练习题有巩固练习的基本题和利用2、5倍数的特征灵活解决问题的习题。充分让学生感知数学与生活的密切联系。
反思本节课的教学不失为一堂指导学生进行探究性学习的课,但作为教师,总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。
本节课在制定目标的时候,从数学研究方法这个方面着手,在学生掌握知识的同时,更注重让学生了解科学的数学研究的过程。一堂课的知识目标是很容易达成的,但是如果要渗透数学思想方法或科学的研究方法,往往会给我们一线教师带来很多困难。在这节课中,我引导学生通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果,并进行应用。
1、渗透“范围”意识。
当我们说要研究2、5的倍数的特征时,学生想当然地会认为只要一个数一个数地研究就可以了。如果让他们实际操作,他们很可能会写了几个数后,就下结论,当然这时候他们下的结论也很可能是正确的。大部分老师在这样的情况下,就会肯定学生的结论,然后进行练习巩固。
但是教师并没有满足于此,而是抱着科学严谨的态度。仅仅几个数就能得出结论了吗?答案显然是否定的,一项结论的得出不是这样草率的。如果教师如此这般教学,一次两次不要紧,长久以来,学生也会形成草率的态度,以偏概全,缺乏一种科学的严谨,这是很可怕的。
所以我们看到,首先教师引导学生确定了“小范围”的意识,在数据比较多的时候,我们可以先确定一个范围,在有限的时间里研究这个范围中的数的特征,得到在1-100这个范围内5的倍数的特征,个位上的数字是5或0。这时候教师没有满足于此,而是引导学生认识到这个结论仅仅适用于1-100这个小范围,是不是在所有不等于0的自然数中都使用呢?还需要研究。所以接下来在教师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。只有进行了研究,才能得到正确的结论,最后在学习和生活中进行应用。
2、感受“猜想”与“结论”的不同。
在教学2、5的倍数的特征之前,教师找了几个学生访谈,想了解学生学习的前在状态,当然所找的学生是各种层次都有的。对于2、5的倍数的特征,应该说比较简单,所以中等学生和优等生都已经知道了它们的特征——2的倍数肯定是双数,5的倍数末尾是5或0,只有个别学困生一无所知。同时有个奇怪的现象,所有知道这个结论的同学都认为这个结论非常正确,以后就能用这个结论来进行判断,不需要进行验证,当然他们的结论获得也仅仅是“知道”的过程,没有经历“探究”过程。如果长此以往,学生仅仅是知识的接受者,而不是知识的探究者,以后将只习惯于被动接受,而不会主动发现。
有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时教师才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有研究后,猜想才可能变成结论。
相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论,当然我们教师也要鼓励学生大胆猜想。并用适当的方法来验证自己的猜想,从而得到正确的结论。
随着新课改的不断深入,我们教师在制定教学目标时,不要再仅仅关注学生知识目标,更重要的是要关注学生的能力目标,只有从小培养,从小渗透,那么我们学生对数学的认识才会更深刻,也才会在数学上有更大的造诣。
一、互动、质疑,激发学生的探究兴趣。
好的开始等于成功了一半。课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。你们想知道是什么吗?”由此引出课题。这样大大的调动了学生学习的积极性,激发了其探究的欲望。
二、鼓励学生独立思考,经历猜测验证的过程。
数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现“个位上是0或5的数是5的倍数。”而这只是猜测,结论还需要进一步的验证。我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1—100这个小范围。是不是在所有不等于0的自然数中都适用呢?还需要研究。在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
三、小组合作,发挥团体的作用。
动手实践、合作交流是学生学习数学的重要方式。与5的倍数特征相比较,2的倍数特征稍显困难,所以我组织学生利用小组合作的方式,根据探究5的倍数的特征的思路,小组合作探究2的倍数的特征。经过这样的合作讨论,大多数小组能够得到正确或接近正确的答案。突出了学生的主体地位,让他们在充分的探索活动中充分发现规律、举例验证、总结归纳。
四|、通过平等对话实现师生互动、生生互动。
教师与学生是课堂生态系统中的两个主体因素。教师是学生的知心朋友,是学生的学习伙伴,学生是学习的主人。我在本节课的教学程中,通过师生互动、生生互动,努力让课堂教学不仅是学生学习知识的过程,而且是师生共同建构知识的过程,从而实现师生知识共享、情感交流、心灵沟通。整个课堂教学活动,给学生创设宽松的学习氛围,让学生始终感到课堂是一个学习知识的大家庭,任何不成熟的想法在共同的交流中是可以成熟的,让学生自觉地参与到解决问题的行列中。
五、精心选题,发挥习题的探索性和趣味性。
习题的设计力争在突出重点、突破难点、遵循学生认知规律的基础上,体现趣味性、基础性、层次性、灵活性、生活性。本节课我设计的练习题有巩固练习的基本题和利用2、5倍数的特征灵活解决问题的习题。充分让学生感知数学与生活的密切联系。
的倍数的特征说课稿篇十八
根据新课程标准,对于本节课我将以教什么,怎么教,为什么这样教为思路,从教材分析,学情分析,教学方法,教学过程几个方面加以说明,首先谈谈我对教材的理解。
一、说教材。
本节课选自人教版小学五年级下册内容。这部分内容是在学生掌握了倍数概念的基础上进行教学的。它是学好找因数、求公约数和最小公倍数的重要基础,对以后学习约分、通分知识做了一个很好的铺垫,同时对学生的观察能力及自主探究能力的提升有很大作用。因此,掌握2、5的倍数的特征,对于本单元的内容具有十分重要的意义。
二、说学情。
教材是上好一节课的前提,但教学活动的主体是学生,因此,除了对教材理解外还要对所教授的学生很了解。我所教授的五年级学生正处于生长发育阶段,思维还在发展中,好表现,爱思考,对于新的知识感兴趣,但他们自制力差,注意力集中时间段,要在短时间内让他们对本节课的知识掌握有难度,所以老师应该加以正确的引导。
三、教学目标。
基于以上对学情和教材的分析,我确定了本节课的教学重难点。
知识与技能目标:学生掌握2、5的倍数的特征并能够掌握判断方法。
过程与方法目标:通过自主探究,讨论等方法,会判断一个数是不是2、5的倍数。
情感态度与价值观目标:通过学习,增强学习数学的兴趣,养成勤于思考的学习习惯,逐步养成类推能力及主动获取知识的能力。
结合教学目标,我确定本节课的重难点为:
四、教学重难点。
重点:掌握2、5的倍数的特征及奇数、偶数的概念。
教学:掌握既是2的倍数,又是5的倍数的特征。
为了突出重点,突破难点,顺利达成教学目标,我将采用的教学方法有:
五、教学方法。
讲授法,自主探究法,小组讨论法。
六、教学过程。
新课标要求学生是学习的主体,教师是引导者,组织者,下面我将从四个方面谈谈本节课的教学过程。
1.新课导入。
我会在多媒体上呈现一些数字,4,6,8,10,15,16,20,25......,紧接着让学生回顾之前所学的倍数概念,找出2、5的倍数。在学生找出来后,我会让他们以小组为单位,观察这些数字,并看看有什么特点?从而,导入今天的新课。这样设计不但可以帮助学生巩固以前的旧知识,还可以帮助他们培养思维能力。
2.新课教学。
待他们讨论结束后,我会出示百数表,以提问的方式请不同的同学说出2的倍数有哪些特征,5的倍数有哪些特征,并对他们的回答加以引导完善,从而总结出2、5的倍数特征:
紧接着引导同学观察自然数及其2的倍数,通过观察,2的倍数全是双数,从而引出偶数和奇数的概念。
这样设计不但可以锻炼学生的观察能力,同时还可以锻炼他们的自主探究学习能力,而且突出了本节课的重点。
3.巩固提升。
我会在多媒体上呈现一些数字,让同学们判断哪些是2的倍数,那些事5的倍数。之所以这样设计是因为能够让学生对本节课的知识加以理解掌握,同时突破难点。
4.小结作业。
我会请一位同学说说本节课的收获,同时给他们留一个小任务,课后探究3的倍数特征。这样不但能提升学生的归纳总结能力还能拓展他们的思维。
七、说板书。
我的板书注重突出重点,简单明了,便于学生理解本节课知识。
2.奇数和偶数。
八、教学反思。
的倍数的特征说课稿篇十九
首先对学生进行一个简单地复习,主要是检查学生对因数和倍数的掌握情况,然后再教学2和5的倍数特征,教学时教师从学生已有的生活经验和知识基础出发,让学生在情境中通过观察、归纳、概括得2和5的倍数的特征,其次在介绍奇数和偶数时,提醒学生注意“0”是一个特殊的数,0是2的倍数,也是偶数。
二、教案。
授课人。
孔水兰。
学科。
数学。
学校。
宁墩中心小学。
课题。
教学。
目标。
1、让学生通过探索2、5的倍数的特征过程,掌握2、5倍数的特征,并会正确的判断一个数是否是2、5的倍数。
2、理解奇数、偶数的意义,能正确判断一个数是奇数还是偶数。
3、通过学习,培养学生观察与分析能力,提高学生的思维水平。
教学重点。
教学难点。
能灵活地写出一个符合要求的数。
教具学具。
单号入口、双号入口卡片,1~50的数字卡片、小黑板。
教学方法。
谈话、观察、比较、归纳。
教师活动。
学生活动。
设计意图。
一、 复习导入。
教师:1、什么叫因数?
什么叫倍数?
2、下面各组数,谁是谁的因数;谁是谁的倍数?(小黑板出示)。
(1)12和6 (2)28和7。
(3)13和1。
二、探索新知。
1、情境引入。
提问:(1)大家喜欢看电影吗?
(2)从这幅图中你看到了什么?
(3)电影院的入口处分别有什么?
提示?
(4)座号是多少的应该从双号入口进?
(2)结合学生回答,板书:
2×1=2 2×6=12 。
2×2=4 2×7=14。
2×3=6 2×8=16。
2×4=8 2×9=18。
2×5=10 2×10=20……。
3、教学奇数、偶数。
教师:一个数是不是2的倍数,还有很多知识,你们想知道吗?请打开书第17页自学。
提问:你们从书上还知道了些什么?
(1)教师:指名说说5的倍数(从小到大的顺序)。
(2)板书:
5、10、15、20、25、30……。
(3)出示课本第18页的表格。
(4)归纳:各位上是0或5的数,是5的倍数。
(5)练习。
布置教材第18页“做一做”
三、 拓展练习。
按下面的要求用0、3、4组成三位数。(小黑板出示)。
(1)2的倍数。
(3)既是2的倍数,又是5的倍数。
四、全课小结。
教师:通过这节课的学习,你都有哪些收获?
五、 作业 。
教材第20页第1~3题。
个别学生回答。
指名回答。
观察课本第17页的情境图,然后回答教师的提问。
(1)学生观察板书,探索2的倍数的特征,然后得出结论。
(2)学生说数、验证、同桌交流。
学生看第17页自学。
说说什么是偶数?什么是奇数?
(1)观察这些数,想一想有什么特征?
(2)学生找出5的倍数。
(3)说一说。
(4)口头回答。
学生尝试做一做,可以同桌交流、讨论。
学生独立完成作业 。
(通过口答练习,让学生对上节课所学过的知识进行复习,使学生进一步理解因数、倍数两个数学概念)。
从贴近学生的生活情境入手,让学生感受数学源于生活,激发学生学习和探索的兴趣。
让学生进行数学思考,自己探索2的倍数的特征。并请同桌说数验证一下,注重了数学归纳。
让学生自学奇数、偶数,培养学生的自学能力。
渗透迁移的数学方法,从探索“2的倍数特征”的方法,迁移到“5的倍数的特征”。经历“猜测—探索—验证—归纳”完成知识的形成过程。
练习设计注重开放性和思考性,有利于知识的巩固和思维的提高。
板书设计:
2的倍数是偶数(0是偶数),不是2的倍数的数是奇数。
个位上是0的数同时是2和5的倍数。
点评:
1、从贴近学生生活的情境入手,激发了学生的学习兴趣。
2、整节课学生通过“观察—猜测—探索—归纳”,完成知识的形成过程,体现了数学思考的严谨性。
3、练习涉及丰富、有层次,满足不同层次的要求,学习效果好。
【本文地址:http://www.xuefen.com.cn/zuowen/16577011.html】