二的倍数教案(优质21篇)

格式:DOC 上传日期:2023-12-05 15:03:06
二的倍数教案(优质21篇)
时间:2023-12-05 15:03:06     小编:纸韵

教案还可以为教师提供参考,促进教学研究和教学改革。编写教案前,教师应明确教学目标,确立学生的学习任务和期望。这些教案范文展示了各个学科不同单元内容的教学设计和教学方法。

二的倍数教案篇一

使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。

教学重点、难点

重点、难点:求两个数的公倍数和最小公倍数

备 注

一、问题情境引入

(问题情境的材料可视学生实际情况作调整)

二、新课展开

1、建立公倍数、最小公倍数的概念。

(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。

学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:

生甲:我们画了一条表示天数的数轴然后分别找出甲组、乙组第一次同时去后过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。

可由学生边讲边画出示图,也可由教师根据学生回答板书。(图略)

教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?

生甲:还会相遇,不过画图找太麻烦了。

生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。

教师板书学生思路:

甲组经过:6天、12天、18天、28天、30天、36天......

乙组经过:9天、18天、27天、36天、45天......

所以经过18天、36天......他们再次相遇。......

生:甲组、乙组经过的天数分别是6的倍数和9的`倍数。(教书调整板书)

6的倍数:6、12、18、24、30、36......

9的倍数:9、18、27、36、45......

教学过程

备 注

生讨论得出:18、36既是6的倍数,又是9的倍数,是6和9的公约数,即是6和9的公约数,18和9的公倍数中最小的,可以称为最小公倍数。

(3)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)

师:那么什么叫公倍数、最小公倍数?

学生讨论后得出;几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

师:有没有最大公约数,为什么?

生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公约数还有54、72、90......无穷无尽。

2、用列举法求两个数的公约数、最小公约数。

做课本第57页练一练第1题,学生试算后,反馈。

生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。

教师随学生记叙板书;

6的倍数有:6、12、18、24......

4的倍数有:4、8、12、16、20、24......

6和4的公约数有:12、24......

6和4的最小公约数是12。

(2)师生共同方法。

(3)练习:完成课本练一练第2、3、4、5题。

三、课堂

通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等关概念外,还应注意学习方法,情感等方面的。)

四、作业《作业本》

从倍数着手,层层深入,得出公倍数与最小公倍数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合。

课后反思:

激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的,包罗万象,既有对学习方法的,又有对学习情感的,也有对自己的鞭策鼓励。这样的,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。

二的倍数教案篇二

(非零自然数中)。

1×36=3636÷1=3636÷36=1。

2×18=3636÷2=1836÷18=2。

3×12=3636÷3=1236÷12=3。

4×9=3636÷4=936÷9=4。

6×6=3636÷6=6。

36的因数有:1、2、3、4、6、9、12、18、36.

二的倍数教案篇三

教学目标:

使学生学会求三个数的最小公倍数的方法,并能正确地,合理地求三个数的最小公倍数。

教学过程:

一、复习

什么是公倍数、最小公倍数

怎样求两个数的最小公倍数

求两个数的最小公倍数与最大公约数有什么联系

当两个数是倍数关系时,大数就是这两个数的最小公倍数,小数就是这两个数的最大公约数。

当两个数是互质数时,这两个数的最大公约数是1,这两个数的最小公倍数是这两个数的乘积。

二、揭示课题

这节课我们学习求三个数的最小公倍数。

三、教学新课

1、例3求12、16和18的最小公倍数。

2、学生自学完成。

3、对不懂的问题提出疑问。

4、注意:用短除法求三个数的最小公倍数时,先要用三个数的`公约数去除,然后再用任意两个数的公约数去除。最后的结果要两两互质。

5、试一试

求15、30和60,3.4和7的最小公倍数。

计算后,你发现了什么?

(1)其中一个数是其他两个数的倍数,那么最大的数就是这三个数的最小公倍数。

(2)当三个数是互质数时,三个数的乘积是这三个数的最小公倍数。

四、巩固练习

五、反馈

六、布置作业

反思:本节课的难点是让学生知道为什么在求出三个数的公约数后还要求出两个数的公约数。然后把所有的除数和商乘起来。

二的倍数教案篇四

回来一次,你知道它们最快什么时候相遇吗?(完成书上60页的试一试)。

师:50以内6的倍数有哪些?

生:6、12、18、24、30、36、42、48。

师:50以内9的倍数又有哪些?

生:9、18、27、36、45。

师:50以内6和9的公倍数有哪些?

生:18和36。

生:18。

师:我们的两组蜜蜂最快在18分钟的时候相遇了。

生:列举法。

师:那现在还有一种方法找最小公倍数,短除法。

21824。

912。

34。

3和610和89和4。

4.联系实际,解决问题。

师:看看,这是什么?

生:跑道。

师:同学们平时爱跑步吗?,在学校的跑道上跑一圈大概需要多长时间?现在看看他们三个人的。

(1)我跑一圈用6分钟。

(2)我跑一圈用4分钟。

(3)我跑一圈用8分钟。

师:你能提出问题吗?

生1:他们同时出发男孩和女孩最快什么时候相遇?

生2:他们同时出发男孩和老师最快什么时候相遇?

生3:他们同时出发老师和女孩最快什么时候相遇?

(独立完成)。

二的倍数教案篇五

1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

二的倍数教案篇六

1.学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。

2.通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3.在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。教学重点:理解公倍数和最小公倍数的含义。

二的倍数教案篇七

课程标准指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。罗老师执教的这节《公倍数与最小公倍数》就是很好地采用了适合这节课本身又有利于提高学生数学学习活动的方式,是在引导学生自主参与、发现、归纳的基础上认识并建立公倍数和最小公倍数概念的。整节课给人以清新、流畅之感,纵观这节课的教学,有以下几个吸引我的亮点:

1、故事导入,生动有趣,意义深远。

五年级学生的生活经验和知识背景更为丰富,课标要求教材选择具有现实性和趣味性的素材,由浅入深地促使学生在探索与交流中建立概念。本节课罗老师采用了一个渔夫打鱼的故事导入,此材料不仅紧贴课堂所要教学的主题,又使数学教学与生活实际紧密联系在一起,并且很能激发学生的学习积极性。通过解决故事中的问题,让学生经历概念的揭示过程,体验成功的喜悦。

2、讲练结合,层次分明,形式多样。

罗老师十分注重讲练结合及前后知识的整合。练习中有一般基础题,有求一定范围内的两数的公倍数,还有根据学生已有的知识经验判断2和3、2和5、3和5这些特征明显的两数的.公倍数和最小公倍数。学生在练习中获得对新知的巩固和强化,同时也巩固了已有的知识,加强了数学知识的联系性。练习时,罗老师不仅关注学生会不会做,更重要的是关注怎么做,当学生反馈时,注重让学生自己来讲讲思考过程,暴露自己的想法,培养学生的应用能力。

3、精彩课件,美丽清新,实用有效。

罗老师这节课还有一个亮点就是她采用的是flash课件,较一般的幻灯片课件要清新、漂亮。漂亮的课件不但吸引了学生的注意也将我们听课教师的目光牢牢锁住。并不是华而不实,罗老师的这套课件对完成这堂课的教学起到了很好的辅助作用,许多地方通过动态演示显得更清楚明了。

当然,这节课也存在一些需要进一步改进的地方,如:同类型教学出现次数过多,像是在教学并概括出4的倍数还有很多可用省略号表示后,6的倍数还在叫生一一列举,难免给人啰嗦之感;对学生回答问题的表述是否完整的关注还需加强,有生在回答2和3的公倍数有哪些这句话还能理解成什么问题时说道“能被2、3整除的数”,其实准确的描述应是能同时被2、3整除的数;另外,我觉得本课设计的联系量还不够大,可适当再增加一些。

二的倍数教案篇八

该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

二的倍数教案篇九

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

一、激情导课。

1、师:同学们,看今天我们要学习什么?(最小公倍数)。

看到这个题目,你会想到我们以前学过的什么知识?(倍数)。

2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。

3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。

二、民主导学。

任务一。

要求:先独立思考,不会的小组商量。

提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天。

教师巡视学习情况。

1、师:他们可选那几日外出?(12、24)。

你是怎样选出来的?根据回答板书;

妈妈的休息日:481216202428----4的倍数。

爸爸的休息日:612182430-----6的倍数。

共同的休息日:1224-----4和6的公倍数。

还可以用集合图来表示,

2、仔细观察两组数据有什么特征?

3、再次强调4的公倍数就是妈妈的`休息日。

6的公倍数就是爸爸的休息日。

4和6的公倍数就是爸爸和妈妈的共同休息日。

4、最近是哪一天?12。

12也是这公倍数中最小的一个,叫做最小公倍数。

5、集合图还可以这样表示出示课件。

问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)。

你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?

这样我们可以一眼看出4和6的公倍数是12、24.

6、谁能用一句话说说什么是公倍数?什么是最小公倍数?

7、89页做一做。

任务二。

一、任务呈现。

2、想一想。

1.你还能想出几种求法?

2.公倍数有多少个?你能找出最大的公倍数吗?

二、自主学习。

三、展示交流。

1、把不同求法板书。

2、交流以上三个问题。

(三)检测导结。

1、目标检测。

求下列每组数的最小公倍数(要求5分钟)。

2和74和8。

3和56和15。

2、结果反馈。

一次正确5分,自己改正4分,帮助改正3分,

3、反思总结谈谈收获和不足。

二的倍数教案篇十

4、培养学生的观察能力。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12。

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)。

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。

齐读p12的注意。

(一)找因数:

1、出示例1:18的因数有哪几个?

学生尝试完成:汇报。

(18的因数有:1,2,3,6,9,18)。

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36。

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)。

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。

仔细看看,36的因数中,最小的'是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如。

18的因数。

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……。

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12。

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……。

你是怎么找的?(用3分别乘以1,2,3,……倍)。

5的倍数有:5,10,15,20,……。

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。

2的倍数3的倍数5的倍数。

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

完成练习二1~4题。

二的倍数教案篇十一

一、谈话导入,揭示课题。

我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。

板书课题:3的倍数的特征。

二、探索交流、获取新知。

(一)活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。

(二)活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

(先独立完成,看谁找的快?)。

2、观察3的倍数,你发现了什么?

教师参与到讨论学习中。

先独立思考,想出自己的想法。

然后与四人小组的同学说说你的发现。

生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生2:十位上的数也没有什么规律。

生3:将每个数的各个数字加起来试试看。

3、你发现的规律对三位数成立吗?找几个数来检验一下。

(1)自己先找几个数试一试。

(2)然后在小组内说说你验证的结论。

(三)活动三:试一试。

在下面数中圈出3的倍数。

284553873665。

(先自己圈,然后说说你是怎样判断的?)。

(四)活动四:练一练。

1、请将编号是3的倍数的气球涂上颜色。

361754714548。

(自己独立完成,在小组内说说自己的想法。)。

2、选出两个数字组成一个两位数,分别满足下面的条件。

3045。

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。

(独立完成,说说你的窍门和方法。)。

(五)活动五:实践活动。

在下表中找出9的倍数,并涂上颜色。

(可以在自主实践以后再交流。)。

三、总结。

通过这节课的学习,你有什么收获?

二的倍数教案篇十二

1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。

2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。

3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。

二的倍数教案篇十三

使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。

教学重点、难点。

备注。

一、问题情境引入。

(问题情境的材料可视学生实际情况作调整)。

二、新课展开。

(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。

学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:

生甲:我们画了一条表示天数的数轴然后分别找出甲组、乙组第一次同时去后过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。

可由学生边讲边画出示图,也可由教师根据学生回答板书。(图略)。

教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?

生甲:还会相遇,不过画图找太麻烦了。

生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。

教师板书学生思路:

甲组经过:6天、12天、18天、28天、30天、36天......

乙组经过:9天、18天、27天、36天、45天......

所以经过18天、36天......他们再次相遇。......

生:甲组、乙组经过的天数分别是6的倍数和9的倍数。(教书调整板书)。

6的倍数:6、12、18、24、30、36......

9的倍数:9、18、27、36、45......

教学过程。

备注。

生讨论得出:18、36既是6的倍数,又是9的倍数,是6和9的公约数,即是6和9的公约数,18和9的公倍数中最小的,可以称为最小公倍数。

(3)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)。

学生讨论后得出;几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

师:有没有最大公约数,为什么?

生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公约数还有54、72、90......无穷无尽。

2、用列举法求两个数的公约数、最小公约数。

做课本第57页练一练第1题,学生试算后,反馈。

生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。

教师随学生记叙板书;

6的倍数有:6、12、18、24......

4的倍数有:4、8、12、16、20、24......

6和4的公约数有:12、24......

(2)师生共同方法。

(3)练习:完成课本练一练第2、3、4、5题。

三、课堂。

通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等关概念外,还应注意学习方法,情感等方面的。)。

四、作业《作业本》。

从倍数着手,层层深入,得出公倍数与最小公倍数的`意义。教学过程中运用集合图,不但形象直观,而且渗透了集合。

课后反思:

激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的,包罗万象,既有对学习方法的,又有对学习情感的,也有对自己的鞭策鼓励。这样的,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。

二的倍数教案篇十四

1.回顾知识。

提问:上节课,我们已经复习了整数和小数的有关知识。

结合学生交流,板书。

2.揭示课题。

引入:这节课,我们复习因数和倍数的相关知识。

通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。

二、基本练习。

1.知识梳理。

提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?

学生回顾,交流,教师适当引导回顾。

根据学生回答,板书整理。

2.做练习与实践第10题。

学生独立完成,指名板演。

集体交流,让学生说说找一个数的因数和倍数的方法。

3.做练习与实践第11题。

出示题目,学生直接口答。

提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?

追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。

4.做练习与实践第12题。

学生先独立写出质数和合数,再指名口答。

追问:最小质数是几?最小的合数呢?

二的倍数教案篇十五

1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2、培养学生观察、比较、抽象、慨括的能力。

3、培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。

质数、台数、济数、偶数的区别

给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小_的分类方法。明确:分类的际准很重要。

说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

今天我们就用找约数的方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作。找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!

根据学生的回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

15 28 31 53 77 89 1ll

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成练一练。

1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22 29 35 49 51 79 83

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是这样的关系呢?

(略)。

二的倍数教案篇十六

(1)能直接在方格图上,数出相关图形的面积。

(2)能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

2、过程与方法

(1)在解决问题的过程中,体会策略、方法的多样性。

(2)学会与人交流思维过程与结果。

3、情感态度与价值观

积极参与数学学习活动,体验数学活动充满着探索、体验数学与日常生活密切相关。

1、重点是指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。难点是灵活运用方法。

2、借助图形,让学生动手,自主探索、合作交流解决问题的方法。

一、创设情境、揭示新课。

我要说班里每位同学都是优秀的设计师!因为大家都在设计着自己美好的将来,所以在很用功的学习。希望大家继续努力,使自己美好的设计成为现实。下面我们来看一看,我们的同行——一位地毯图案设计师,设计的图案。

展示地毯上的图形,让学生仔细观察图形特点,说发现。

地毯是正方形,边长为14米蓝色部分图形是对称的,……

师:看这副地毯图,请你提出数学问题。

根据学生的回答展示问题:“地毯上蓝色部分的面积是多少?”

师板书课题:地毯上的图形面积

二、自主探索、学习新知

如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?

1、学生独立解决问题

要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。

2、小组内交流、讨论

3、班内反馈

请学生汇报蓝色部分面积,重点汇报求蓝色面积的方法。对于每一种方法,只要学生说得合理都给以肯定。

学生的答案也许有:

(1)直接一个一个地数,为了不重复,在图上编号;(数方格法)

(2)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)

(3)用总正方形面积减去白色部分的面积;(大减小法)

(4)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)

4、学生总结求蓝色部分面积的方法。

三、巩固练习、拓展运用(课本第19页练一练)

1、第1题

(1)学生独立思考,求图1的面积。

(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。

2、第2题

独立解决后班内反馈。

3、第3题

(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。

(2)学生观察结果,说发现。

第(1)题的4个图形面积分别为1、2、3、4的平方数;第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形 面积的一半。

四、全课小结,课后拓展

今天我们进行了那些活动,你收获了什么?

师:对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。如果没有方格图,我们该怎样解决一些图形的面积呢?明天的数学课上我们将继续学习。课后,有兴趣的同学可以在空白方格纸上设计一些你喜欢的图案,让你的同桌帮你算一算图案的面积。

二的倍数教案篇十七

教学内容:

苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。

教学目标:

1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。

2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。

3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。

教学重点:

教学难点:

应用概念正确判断、推理。

教学过程:

一、揭示课题。

谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?

揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。

二、回顾与整理。

1.回顾讨论。

出示讨论题:

(1)你是怎样理解因数和倍数的?举例说明你的认识。

(2)2、5、3的倍数有什么特征?我们是怎样发现的?

(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。

(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?

让学生在小组里讨论,结合讨论适当记录自己的认识或例子。

2.交流整理。

围绕讨论题,引导学生展开交流,结合交流板书主要内容。

(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)。

(指名学生说一说,再集体说一说)。

你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)。

能说说找一个数的因数或倍数的方法吗?

说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。

(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?

自然数可以怎样分类,各可以分成哪几类?

你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)。

说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。

什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)。

(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?

说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。

结合交流内容,逐步板书成:

l

质数质因数。

合数分解质因数。

(互相依存)。

2、5、3的倍数的特征。

偶数。

奇数。

(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。

学生互相交流,教师巡视、倾听。

交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。

三、练习与应用。

1.做“练习与应用”第1题。

指名学生交流,说说每组里因数和倍数关系。

提问:3和7有没有因数和倍数关系?为什么没有?

2.做“练习与应用”第2题。

(1)让学生独立写出前四个数的所有因数,指名两人板演。

交流:你是怎样找它们的因数的?(检查板演题)。

(2)口答后三个数的因数。

引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)。

提问:一个数的因数有什么特点?

说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。

3.分别说出下面各数的倍数。

581217。

分别指名学生说出各数的倍数,教师板书。

提问:为什么要写省略号?一个数的倍数有什么特点?

说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。

4.做“练习与应用”第3题。

(1)让学生独立完成填数。

交流:题里各是怎样填的?(呈现结果)填数时怎样想的?

提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?

哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。

(2)这里哪些数是偶数?奇数呢?

你是怎样判断偶数和奇数的?

5.做“练习与应用”第4题。

要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。

交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?

(板书:180810)。

组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)。

6.做“练习与应用”第5题。

让学生把质数圈出来,在合数下面画线。

交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?

说明:质数只有2个因数,合数至少有3个因数。

7.做“练习与应用’’第6题。

交流、呈现结果。

提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。

所有的合数都是偶数吗?你能举例子说明吗?

指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。

8.下面的说法正确吗?

(1)大于0的自然数不是奇数就是偶数。

(2)大于0的自然数不是质数就是合数。

(3)奇数都是质数,偶数都是合数。

(4)自然数中最小的偶数是2,最小的合数是4。

(5)一个数本身既是它的因数,又是它的倍数。

9.做“练习与应用”第7题。

(1)让学生填空,指名板演。交流并确认结果。

提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?

说明:这里把合数写成这种质数相乘的形式,叫什么?

(2)把30、42分别分解质因数。

学生完成,交流板书,检查订正。

四、全课总结。

提问:这节课主要复习的哪些内容?你有哪些收获?

将本文的word文档下载到电脑,方便收藏和打印。

二的倍数教案篇十八

1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

二的倍数教案篇十九

1、在下面数中圈出3的倍数。

284553873665。

2、选出两个数字组成一个两位数,分别满足下面的条件。

3045。

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。

二的倍数教案篇二十

1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。

2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。

教学重难点。

判断一个数是不是3的倍数。

课前准备。

小黑板、学具卡片。

教学活动。

一、引入新课,激发兴趣。

教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)。

教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。

学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。

谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)。

二、自主探索。合作学习。

1.先让学生猜一猜:3的倍数有什么特征?举例说明。

2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?

如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。

4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?

:每个数所用算珠的颗数都是3的倍数。

5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。

:一个数是3的倍数,这个数各位上的数的和一定是3的倍数。

6.进一步验证。(1)同桌之间互相报数,验证刚才的结论是否正确。(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。

7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?

在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

三、运用结论。巩固拓展。

1.做“想想做做”第1题。

指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?

2.做“想想做做”第2题。

提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。

3.做“想想做做”第3题。

让学生独立填写,再在小组里交流:你能找到几种不同的填法?

4.做“想想做做”第4题。

学生涂完后,指名回答:9的倍数都是3的倍数吗?

5.做“想想做做”第5题。

各自组数,并把组成的数记下来。

指名报答案,全班学生评议。

6.补充题。

提问:你今年几岁?再过几年你的岁数是3的倍数?

四、

二的倍数教案篇二十一

苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。

1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。

2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。

3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。

整理、应用因数和倍数的知识。

应用概念正确判断、推理。

一、揭示课题

谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?

揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。

二、回顾与整理

1.回顾讨论。

出示讨论题:

(1)你是怎样理解因数和倍数的?举例说明你的认识。

(2)2、5、3的倍数有什么特征?我们是怎样发现的?

(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。

(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?

让学生在小组里讨论,结合讨论适当记录自己的认识或例子。

2.交流整理。

围绕讨论题,引导学生展开交流,结合交流板书主要内容。

(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)

(指名学生说一说,再集体说一说)

你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)

能说说找一个数的因数或倍数的方法吗?

说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。

(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?

自然数可以怎样分类,各可以分成哪几类?

你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)

说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。

什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)

(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?

说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。

结合交流内容,逐步板书成:

l

质数质因数

合数分解质因数

因数公因数最大公因数

(互相依存)

倍数公倍数最小公倍数

2、5、3的倍数的特征

偶数

奇数

(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。

学生互相交流,教师巡视、倾听。

交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。

三、练习与应用

1.做“练习与应用”第1题。

指名学生交流,说说每组里因数和倍数关系。

提问:3和7有没有因数和倍数关系?为什么没有?

2.做“练习与应用”第2题。

(1)让学生独立写出前四个数的所有因数,指名两人板演。

交流:你是怎样找它们的因数的?(检查板演题)

(2)口答后三个数的因数。

引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)

提问:一个数的因数有什么特点?

说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。

3.分别说出下面各数的倍数。

581217

分别指名学生说出各数的倍数,教师板书。

提问:为什么要写省略号?一个数的倍数有什么特点?

说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。

4.做“练习与应用”第3题。

(1)让学生独立完成填数。

交流:题里各是怎样填的?(呈现结果)填数时怎样想的?

提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?

同时是2和5的倍数的数有什么特征?

哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。

(2)这里哪些数是偶数?奇数呢?

你是怎样判断偶数和奇数的?

5.做“练习与应用”第4题。

要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。

交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?

(板书:180810)

组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)

6.做“练习与应用”第5题。

让学生把质数圈出来,在合数下面画线。

交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?

说明:质数只有2个因数,合数至少有3个因数。

7.做“练习与应用’’第6题。

让学生选出质数和偶数。

交流、呈现结果。

提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。

所有的合数都是偶数吗?你能举例子说明吗?

指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。

8.下面的说法正确吗?

(1)大于0的自然数不是奇数就是偶数。

(2)大于0的自然数不是质数就是合数。

(3)奇数都是质数,偶数都是合数。

(4)自然数中最小的偶数是2,最小的合数是4。

(5)一个数本身既是它的因数,又是它的倍数。

9.做“练习与应用”第7题。

(1)让学生填空,指名板演。交流并确认结果。

提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?

说明:这里把合数写成这种质数相乘的形式,叫什么?

(2)把30、42分别分解质因数。

学生完成,交流板书,检查订正。

四、全课总结

提问:这节课主要复习的哪些内容?你有哪些收获?

【本文地址:http://www.xuefen.com.cn/zuowen/17468458.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档