成正比例教案(通用13篇)

格式:DOC 上传日期:2023-12-02 07:58:07
成正比例教案(通用13篇)
时间:2023-12-02 07:58:07     小编:文轩

教案的编写需要综合考虑教材、学生和教学环境等因素。教案的编写过程需要教师根据学生的实际情况进行差异化教学设计。教案的分享和交流是教师专业成长的有力支撑。

成正比例教案篇一

本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。

例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。

试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。

学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。

练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的.比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。

像直观表达正比例关系。

例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照a点表示1小时行80千米b点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。

练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。

例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。

练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。

成正比例教案篇二

教学过程。

谈话导入。

师:谁能用比的知识说一说我们班男女同学的人数情况?

(指名汇报)。

师:今天我们就一起来整理和复习比和比例的有关知识。

回顾与整理。

1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。

预设。

生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。

生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。

生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。比例尺可分为数值比例尺和线段比例尺。

生4:配制农药会应用到比的知识;地图上一般都有比例尺。

……。

(2)说一说比与比例有什么区别。

比例。

各部分名称。

0.9∶0.6=1.5。

前项后项比值。

基本性质。

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个内项的积等于两个外项的积。

(3)出示教材83页“回顾与交流”2题。

学生独立完成,思考比、分数、除法之间的关系,并全班交流。

预设。

生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。

生2:除法算式的商相当于分数的分数值,相当于比的比值。

强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。

成正比例教案篇三

p50第3——8题,正反比例关系练习。

进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。

一、揭示课题。

二、基本知识练习。

2、练:950第4题。

先说出数量关系式,再判断成什么比例?

三、综合练习。

1、练习:p50第5题。

想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?

口答并说说怎样想的。

2、做练习十二第6题、第7题。

3、做第8题。

提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?

四、延伸练习。

下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?

1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。

2、某工厂3小时织布1800米,照这样计算,8小时织布x米。

五、课堂。

通过这节课的练习,你进一步认识和掌握了哪些知识?

六、作业。

《练习与测试》p25第五、六题。

成正比例教案篇四

一、教学设计说明:

这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。这节课的教学目标是:

1、使学生感受正比例在实际生活中的存在,经历概括两种量成正比例关系的过程。

2、理解正比例的意义,并能根据正比例的意义正确判断两种量是否成正比例关系。

3、培养学生的抽象概括能力和分析判断能力。

4、培养学生初步的函数意识。

教学重点:学生理解正比例的意义。

教学难点:引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。

本节课,教师对在引导学生复习了“路程、时间、速度”、“总价、数量、单价”、“工作量、工作时间、工作效率”等基本的数量关系后,从学生熟悉的三个事例入手,让学生在观察、分析中,在正反两方面事例的对比中抽象、概括出正比例的意义。在这里,我灵活改编了教材中的例题。首先出示三个生活事例,让学生通过小组合作的方法进行探究,从而理解正比例的意义。再次通过正反事例让学生在对比中抽象出正比例的本质。然后通过小结,使学生回顾正比例的意义和获得知识的方法。最后在巩固练习中提升,同时为下节课的教学埋下伏笔。

二、教学设计:

(一)复习准备。

1、已知路程和时间,怎样求速度?

2、已知总价和数量,怎样求单价?

3、已知工作总量和工作时间,怎样求工作效率?

教师根据学生的回答进行板书。

(1)每组选择喜欢的一则材料作为本组的研究对象。

(2)每人围绕选定材料的下述三个问题,进行独立思考。

a、每个表中分别有哪两个数量?

b、两个数量之间是怎样变化的?

c、相对应的两种数量的比值有什么特点?

(3)四人在小组内轮流完整地回答三个问题,相互评价。

(4)选好一个同学作为本组所选材料的发言人。

2、学生小组内活动,教师巡视并指导。

3、全班交流,教师引导学生理解“相关联”、“对应”、“一定”。

4、讨论:通过观察表格和回答问题,是否发现这三组材料有什么共同的特点?

教师板书:1、都是两种相关联的量。

2、两种量相对应的比的比值是一定的。

5、教师小结:通过比较分析,我们发现三则材料中都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

6、字母关系式。

学生回答后,教师板书:=k(一定)。

师提问:“一定”能漏掉不写吗?为什么?

(三)巩固练习。

这辆卡车行驶的路程和时间成正比例吗?为什么?

3、练习十三第3题。

(1)、学生先画图,再填表。

(2)、学生独立思考两小题。

(3)、全班交流。

(四)课堂总结。

通过学习,你学到了什么?你是怎么判断两种量成正比例的?怎么发现这种方法的?

(五)深化练习。

1、判断下面各题中的两个量是否成正比例?为什么?

(1)订阅《少年素质教育报》的份数和订报的总价钱。

(2)一段路的总长度一定,已行的路程和剩下的路程。

(3)平行四边形的底一定,它的高和面积。

(4)圆的周长和它的直径。

2、已知x、y、z是三个相关联的量,并且x×y=z。

当()一定时,()和()成正比例。

(六)作业。

练习十三第2题。

三、教学反思。

本节课的内容是苏教版第12册的正比例的意义。探究两种量之间的正比例关系是学生学习静态数学向动态数学过渡的一个重要环节。它是学生今后学习函数的一个重要基础,学好它意义重大。当然,学生初步接触到动态的数学,在观念上转变较难。我认为正比例意义的教学是从:一个量变化、另一个量也随着变化——一个量增加、另一个量也随着增加——这两个量的比值相同——这样的两个变量成正比例。知识的产生是动态生成的。它可以利用表格、图像、关系式来生成概念,也可以利用表格、图像、关系式来判断。因此我把本节课的教学目标定在:让学生经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析、判断、概括、推理能力,同时渗透初步的函数思想。学生在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

在教学过程中我注意了以下几个方面:

1、在复习准备的过程中,我让学生回忆了几种常见的数量关系式,让学生通过这一环节,可以深刻感受到生活中存在着大量的相关联的量。

2、导入新课这一环节,我密切联系学生已有的生活经验和学习经验,出现了三组相关联的量,让学生观察、讨论各组两个相关联的量之间的变化规律,利用表格、问题给学生提供了有利于探索并理解两个量之间变化规律的情境。为下一环节的正比例意义的教学做很好的铺垫。

3、新的数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。在探索新知这一环节,因为有了前面大量的例子做铺垫,我放手让学生自主学习——合作探究——全班交流几个环节,并且从中找出共同点,发现本质,从而归纳出正比例的意义。

以上三个教学环节,我紧扣教材,遵循学生的认知规律,在师生互动的过程中,动态生成正比例的概念。概念的学习关键在梳理,于是在练习这一环节,我首先是再回到第一组表格中,让学生找出成正比例的关系的量,并说一说理由。接着让学生判断一下其他两组相关联的量是否成正比例,并说说理由。利用已有的学习资源,进一步加强对正比例意义认识,同时培养了学生的语言能力。在设计巩固练习的时候由浅入深,要求逐步提高,学生的思维也得到了提高;最后通过总结,引导学生自己对知识进行梳理,培养学生的归纳能力,重点是引导学生发现学习的方法。教师在学生探究活动中,是组织者、引导者,更是参与者、合作者,学生感受到自己是学习主人,规律是自己发现的,学完后很有成就感。

成正比例教案篇五

教学内容:

教科书第63页例2,完成随后的练一练和练习十三第4、5两题。

教学目标:

1、使学生初步理解图像上点所表示的实际意义,即每个点都表示路程和时间的一组相对应的数值。

2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

教学重难点:认识成正比例量的变化规律,体会正比例图像的实际应用。

教学准备:实物投影。

教学过程:

一、教学例2。

1、出示例1的表格。

谈话导入:同学们,像例1中表中的数据,有时也可以用图象的形式来表示。出示已标出纵轴、横轴以及相关信息的方格图。

2、师先示范描点(一两个),让学生按照要求描出表示其他各组数据的点。

3、引导学生观察这些点的排布规律,用直线连接。

4、根据图像回答下列问题:

(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,其他点呢?

(2)图中所描的点在一条直线上吗?

5、对刚才的第(3)个小问题进行指导。(师边演示边讲解)。

(1)先在纵轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,与已知图像相交与疑点。

(2)再从交点起作横轴的平行线,与纵轴相交得到一点。

(3)最后依据与纵轴的交点进行估计。

(4)行驶440千米让学生独立完成,指名板演。

二、巩固练习。

1、完成“练一练”。

(1)根据表中数据判断两种量是否成正比例。

(2)用描点法画出表中两种量的正比例图像。

(3)利用图像进行估计,体会正比例图像的意义和作用。

2、练习十三第4、5题。

第4题的第(1)题,学生可以根据图像的特点来说明判断理由,也可以从图像上选取几个点,根据这些点所表示的路程与时间分别求出比值,再作判断。

第4题的第(2)题,要求学生根据图像进行估计,答案有些出入是允许的。

第5题,先让学生独立完成,在通过组织交流帮他们进一步明确方法,加深认识。还可以让学生再提出一些类似的问题,并进行解答。

三、全课小结。

这节课你学会了什么?通过这节课的学习,你还有哪些收获?

四、课堂作业:补充习题相关练习。

成正比例教案篇六

p47~48,例7、正、反比例的比较。

进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

一、复习

判断下面两种理成不成比例,成什么比例,为什么?

(1)单价一定,数量和总价。

(2)路程一定,速度和时间。

(3)正方形的边长和它的面积。

(4)工作时间一定,工作效率和工作总量。

二、新授。

1、揭示课题

2、学习例7

(1)认识:“千米/时”的读法意义。

(2)出示书中的问题要求学生逐一回答。

(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

(4)填空:用下面的形式分别表示两个表的内容。

当()一定时,()和()成()比例关系。

还有什么样的依存关系?

(5)教师作评讲并。

(6)用图表示例7中的两种量的关系。

指导学生描点、连线

在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?

用同样的方法观察右表。

3、正、反比例的特点(异同点)

由学生比、说

三、巩固练习

1、练一练第1、2题

2、p49第1题。

四、课堂:

正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

五、作业

p49第2题(1)(4)(5)(6)(9)

六、课后作业

1、p49第2题(2)(3)(7)(8)(10)

2、收集生活中正、反比例关系的量并分析。

成正比例教案篇七

“成正比例的量”的教学,是在学生掌握了比例的意义和基本性质的基础上进行教学的,着重使学生理解正比例的意义。正、反比例知识,内容抽象,学生难以接受。学好正比例知识是学习反比例知识的基础。因此,使学生正确的理解正比例的意义是本节课的重点。正反比例关系是比较重要的一种数量间的关系,准确地把握这一关系的判断方法非常重要。新的数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,首先给了学生充分的自学时间,后让学生采取同桌两人互相说说的方式交流,在小组里进行合作讨论,最后在全班交流时给了学生一些较为形象具体的表格形式进行对比、分析,从而让学生能轻易地发现两个数量间的变化关系。通过教学,我有以下几点反思:

一、让学生的大脑动起来。小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,在自学提示中,围绕正比例的意义的理解给学生足够的思考空间,将提纲内容简单化、重点化,让全体学生在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。

二、让小组合作真正更有效。新的数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。本课的教学中,在学生自学的基础上,让学生将自学中不能理解的问题进行小组交流,因为本课时的教学内容难度相对比较大,所以我给小组活动空出了足够的时间,让学生在小组活动中真正达到思维层次上的交流,而不仅仅限于表面上的讨论。事实证明,在本节课内容的教学中,小组交流发挥了很大的作用。也努力做到:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而达到互助。

三、通过练习来检验学生的学习效果。为了及时巩固新知识,我由易到难设计了大容量的练习,以便让学生将所学内容在练习中得到加深理解和巩固。通过练习,学生的思维得到了提高;对正比例的意义理解也加深了认识。在教学正反比例意义时还是有很多不尽如人意的地方。这堂课,对教材中几个概念,在理解上仍存在一些问题。比如,什么样的两种量叫做相关量的两种量,课本上的概念是:一种量变化,另一种量也随着变化。那么一个人的身高和体重算不算两种相关联的量,可以说从一定程度上或多或少有点相关,但是在一定程度上又不相关,比如人到长大以后开始发胖,身高不变,体重变化,这又这么说?所以,我觉得自己在教材的钻研方面,还应多探索,多下功夫。

成正比例教案篇八

1认识面积单位cm2,dm2,m2。

边长是1cm,1dm,1m的正方形各一个课件。【教学过程】。

一、创设情景,引入新课。

(出示:动物王国里小白兔和小熊正在吵个不停,原来它们在争论谁的家大)课件动态显示:小白兔家的地面铺了24块砖,而小熊家的地面铺了36块砖(两种砖的大小不一样,小白兔家的砖要大一些,小熊家的砖要小一些),到底谁的家大一些呢?小白兔和小熊想请你们来当“小裁判”。

学生可能回答:

教师:说得好!要准确地知道面积的大小,就必须要有统一的度量面积的单位,今天这节课我们就来认识面积单位。(板书:认识面积单位)。

二、合作探究、学习新知1认识1cm2看:演示由4条1cm的线段围成的一个正方形,即1cm2,使学生初步认识1cm与1cm2的区别。

量:让学生从学具盒中找出最小的一个正方形,用尺子量一量它的边长是多少?

教师:边长是1厘米的正方形,面积是1平方厘米。

学生看一看,摸一摸1cm2的正方形,再闭上眼睛想一想1cm2有多大?

找:找一找我们身边的哪些物体的表面大约是1cm2。(大拇指的指甲盖、写字本上的田字格)。

摆:教师指出,量较小的面积常用cm2作单位,让同桌合作用6个1cm2的正方形拼成一个长方形,想一想这个长方形的面积是多少?估一估文具盒的上面的面积大约有多少cm2?同桌合作用1cm2的正方形量一量。

引:如果我们用1cm2的正方形去量桌面的面积(不用操作完)。请学生谈感受。

2认识1dm2学生动手操作用1cm2的正方形去量桌面(不用操作完),请学生谈感受。让学生感受到:cm2这个面积单位太小了,量起来不方便,如果换一个大的面积单位来量就好了。

教师:有没有比平方厘米大一点的面积单位?

教师:确实有比平方厘米大一点的面积单位,你们先猜一猜是什么?

教师:你是怎么猜出来的?

教师:说得太好了,这位同学在学习新知识时能联想到以前学过的知识,真会学习,比平方厘米大一点的面积单位确实是平方分米。

找:让学生从学具袋中找出1dm2的正方形,想一想,为什么选个正方形?抽学生汇报,边长是1dm的正方形面积就是1dm2。

比:用手比划一下,1dm2大约有多大?哪些物体的表面大约是1dm2?

摆:同桌合作用1dm2的正方形去量桌面,桌面的面积大约是多少1dm2?

引:如果让你用1dm2的正方形去测量教室地面,你认为怎样?3认识1m2请学生观察并讨论,让学生感受到dm2这个面积单位太小了,量教室的地面不方便,要用再大一点的面积单位量就好了。

学生可能会想到m或m2。教师:为什么是平方米?

看:出示边长是1m的正方形,学生量后再闭上眼睛想一想,1m2究竟有多大?

比:你能比出1m2有多大吗?想一想身边什么物体的表面大约。

是1m2?

做:4人一组用手围1m2。

估:估计黑板的面积大约是多少平方米。

三、课堂活动。

1议一议:1cm2和1cm有什么不同?2第37页课堂活动第1~3题。动手操作。

四、课堂小结。

教师:说说你在今天的数学课上获得了哪些数学知识?还有什么问题?

五、巩固练习。1~4题。教学反思:

长方形和正方形面积的计算(一)【教学目标】。

1经历长方形面积计算公式的探索过程,培养探索精神和探索能力。

引导学生经历长方形面积计算公式的探索过程。【教具、学具准备】。

1cm2的正方形卡片若干张,课件。【教学过程】。

一、引入新课教师:什么叫面积?

说一说下面图形的面积是多少。(1小格是1cm2)出示下面图形:

教师:你知道这个图形的面积是多少吗?

学生可能无法回答,教师可以引导学生猜一猜,并把猜的结果记录在图的旁边。

学生如果不能回答,教师可以引导:长方形的周长可以测量、计算,那长方形的面积呢?

(板书课题:长方形面积的计算)。

二、探索长方形面积计算公式1用数格子的办法探索面积计算公式。

教师:用5个、10个、18个小正方形分别摆成一个长方形,可以怎么摆?请根据你的操作填写下表。

学生逐一填表后展示汇报。姓名正方形个数(个)面积(cm2)长(cm)宽(cm)提问:从上表中你发现了什么?学生可能回答:

教师:也就是说长方形的面积与它们的长和宽都有关系,对吗?2用覆盖的办法探索长方形的面积计算公式出示下面的几个长方形:

学生分组用1cm2的正方形去覆盖上面3个图形,并填下表:图形长(cm)宽(cm)面积(cm2)教师:从刚才的探索中,你又发现了什么?通过交流,尽量让学生感受到长方形的面积与长和宽有关系。

教师:根据上表看一看,算一算,长方形的面积与长和宽有怎样的关系?

教师:是这样的吗?再算一算学习例1时拼的长方形,看是否都具有这一关系?

(1)数一数,算一算,填一填。小正方形的边长为1cm,

长方形面积是()每格1cm2,面积是()小正方形的边长为1cm长方形面积是()(2)算一算。

三、巩固应用。

1计算下面图形的面积2完成练习七第2题让学生完成练习七第2题。

3实践活动:测量并计算面积物体名称课桌面数学书面文具盒面黑板面长宽面积。

四、反思小结。

教师:这节课你们学习了什么?有哪些收获?还有什么不明白的问题?

成正比例教案篇九

教学内容:

教科书第62页例1,完成随后的练一练和练习十三第1~3题。

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

教学重难点: 正比例的意义以及判断两种相关联的量是不是成正比例。

教学准备:实物投影。

教学过程:

一、教学例1。

1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。

2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。

3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。

学生可能会从不同的角度去寻找规律。

教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

根据学生的回答,教师板书关系式:=速度(一定)。

5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

(板书:路程和时间成正比例)。

二、教学“试一试”

1、要求学生根据表中的已知条件先把表格填写完整。

2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

1、引导学生观察上面的两个例子,说说它们有什么共同点。

2、启发学生思考:如果用字母。

x和y分别表示两种相关联的量,用。

k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书关系式y/x=k(一定)。

四、巩固练习。

1、完成第63页的“练一练”。

先让学生独立思考并作出判断,再要求说明判断理由。你是怎样判断的?

2、做练习十三第1~3题。

第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

第2题先让学生独立进行判断,再指名说判断的理由。

第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

五、全课小结。

这节课你学会了什么?通过这节课的学习,你还有哪些收获?

六、课堂作业:完成补充习题的相关练习。

课前思考:

学生是否清晰认识正比例意义,我觉得应该从以下方面引导:1、认识到这两种量是两种相关联的量;2、这两种量是可以发生变化的;3、这两种量的变化是相互有联系的;4、这两种量的变化规律是:它们的比值不变。

对照以上内容,我想在新授前增加一个环节,让学生体会到“相关联的量”。

一、复习导入:

1、选择条件,再根据条件提出问题,并解答。

(1)甲地到乙地的路程是30千米。

(2)苹果每千克4元。

(3)买3千克苹果。

(4)小明骑自行车从甲地到乙地需要2小时。

(5)小芳每天写2页毛笔字。

学生回答后追问:为什么不选(1)和(2)这样两个条件,再提问题呢?体会到数量之间要有联系(也就是相关联),才能找到相应的问题。

2、谈话导入:下面表格中的两个数量是否相关联?

这样进入新授的学习比较顺,同时,判断两种量是否成正比例,关键看两个量的比值是否一定,而这个比值一定要有意义才行,不能随意的两个量就看比值是否相等,这个比值必须有意义才行。

第二,“正比例”是两个量之间的关系,“成正比例的量”是两个正比例量的名称,这两个概念也要防止学生混淆。

课前思考:

看了高教导的“课前思考”,我深有体会。记得以前在教学这一课时内容时,由于自己对教材钻研不够,教学效果总是不如人意。现在想来,原因是教师自己没有很好地理解“正比例的意义”,没有从学生角度来思考学生在判断两个量是否成正比例时会感到哪些困难。现在,高教导结合自己的教学实践谈到了问题的关键之处,我们可以认真学习并在执教时好好把握。

课堂上在组织学生完成教材所提供的相关练习时,我们也要多给予学生充分的交流机会,多让学生用自己的话来表达自己的想法,让学生经历判断两种量是否成正比例的思考过程。

练习十三的第3题要重点指导学生思考与讨论,可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从“边长×4=周长”可以得到周长与边长的比的比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从“边长×边长=面积”可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。

课后反思:

课堂上在揭示正比例的意义时,我将教材上的一段话概括为:两种相关联的量,它们的比值一定,这两个量成正比例(这两个量是成正比例的量)。在练习中要判断两个量是否成正比例时,我又引导学生这样思考和回答,如:因为总价:数量=单价(一定),所以总价和数量成正比例。

因为今天只涉及到两种相关联的数量的比值是否一定,所以学生一般都能正确做出判断。但在练习中遇到不是像例题或练习题中以表格形式出现的而是直接要学生判断时,有些学生就无法正确判断了。如:每天用煤量一定,用煤的天数和用煤的总量是否成正比例;长方形的长一定,长方形的宽和周长是否成正比例。这时还需要教师结合具体的题目进行指导,指导学生思考如何分析这两个量之间的关系。

课后反思:

第一次看教材,一直在思考如何才能让学生更好的认识正比例的意义,觉得很难下手。当我看到高老师和孙老师的课前思考时,感觉收获很大,高老师把正比例的意义归纳的很好,学习到了。也让我感觉到自身的不足之处,没有花时间认真的钻研教材,于是,再把教材看了一遍,因为以前没有接触过这部分内容,还是颇有收获的。

本来信心满满的去上这课,但是课上还是有很多地方没有达到我预想的效果,学生的反映没有预期的好。在完成练习十三的第1题后,我向学生指出碾米的数量相当于是工作总量,每小时碾米的吨数相当于工作效率,揭示工作总量、工作时间、工作效率之间的关系式。有一小部分学生之前已经掌握了,但是大部分学生还不是很明白,结合做练习的时候经常会遇到这类题目,所以我让学生记住了这一数量关系式。

判断两种量是否成正比例,首先看这两种量是否相关联,再看它们的比值是否相等。学生刚开始在判断时基本没有问题,他们知道比值要相等时才可以成正比例,但是具体判断时要看这个比值的实际意义,也就是要找出数量关系式,有小部分学生只是简单的说:因为比值相等,这是不全面的。这也导致了学生作业中写的不是很完整,仔细一想,或许是课上讲得不够仔细,自己的课前准备还不够充分。正如孙老师所说的,补充习题的判断题我也是指导学生完成的,也顺势让学生根据长方形的长一定时,它的面积和宽是否成正比例,让学生加以区分。

课前思考:

这部分内容是在教学过比和比例知识的基础上进行教学的,探究两种量之间的正比例关系是学生学习静态数学向动态数学过渡的一个重要环节。它是学生今后学习函数的一个重要基础,学好它意义重大。当然,学生初步接触到动态的数学,在观念上转变较难。

课后反思:

由于今天早上有一节教研活动课,为了避免连上两节数学课,所以把这节数学课调到了下午。

在新授中,鼓励学生通过自己的努力去发现表中的规律,不是通过例题归纳正比例的特征,而是讲完了试一试,从中找规律的方式,揭示正比例的特征,增强学生对所学规律的可信度。

课后反思:

正比例意义的教学是概念教学,教学中重点要让学生对概念的本质建立清晰的表象。课堂教学中,我注意从判断正比例的几个重要要素让学生分析思考,由于概念的内容比较长,比较复杂,尽管学生意会了,但用语言表达判断时,学生还是比较生疏,处于模仿状态,还没有达到深刻理解的程度。

第二,对于用具体情境,具体数据来分析的实例学生的感性认识比较丰富,但完全用语言表达的数量判断存在一定的困难,对于练习中出现变式情况,更是比较难以理解。随着学习的深入,发现学生的数量关系存在困难,特别是根据两个量找出它们的比值,而这个比值所代表的实际意义要有现实意义,且学生能正确表达。所以在课堂课外作业中,我都要求学生写出判断时的数量关系式,以此训练提高学生对数量关系的分析。

成正比例教案篇十

在教学成正比例的量之前,学生们已经学会了一些常见的数量关系,如:速度、时间和路程的关系,单价、数量和总价的关系等,而正比例是进一步来研究这些数量关系中的一些特征。在教学例1,自学例2时,我都鼓励学生去观察,去探索。尤其是例1,通过学生观察,找出规律,填写表格。通过观察,让学生自己去发现成正比例的两种量的特点,从而充分体现学生学习的自主性,在揭示成正比例的两种量的特点及性质时,让学生根据问题:

1、表中有哪两种相关联的量?

2、相对应的路程(总价)是怎样随着时间(数量)的变化而变化的?

3、相对应的路程(总价)和时间(数量)的比分别是多少?比值是多少?比值表示的意义是什么?来组织、归纳、得出其性质和意义。

在教学例2时,我安排了自学,让学生自主的去获取知识。每个学生都希望自己的想法能跟老师的接近或相同,这样他们会有成就感,从而增强他们学好数学的信心。

在整个教学过程中,我始终处在引导、辅助的地位。让学生成为课堂的主人,让他们尽情表达对于知识的见解,让他们深深感受到这间教室是属于他们的,这节课是属于他们的。让每个学生都有回答问题的机会,因此这节的教学效果很好。

成正比例教案篇十一

教师板书:(一定)。

(五)教学例3(继续演示课件:成正比例的量)。

例3.每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

1.根据正比例的意义,由学生讨论解答.。

2.汇报判断结果,并说明判断的根据.。

(六)反馈练习.。

出示图片:做一做1。

三、课堂小结。

通过这节课的学习,你们都知道了什么?怎样判断两种量是否成正比例?

判断下面每题中两种量是不是成正比例,并说明理由.。

1.苹果的单价一定,购买苹果的数量和总价.。

2.轮船行驶的速度一定,行驶的路程和时间.。

3.每小时织布米数一定,织布总米数和时间.。

4.小新跳高的高度和他的身高.。

五、课后作业。

思考:正方形的边长和周长成正比例吗?

正方形的边长和面积成正比例吗?

六、板书设计。

成正比例教案篇十二

1、经历正比例意义的建构过程,通过具体问题,具体情境认识成正比例的量,初步感受生活中存在很多成正比例的量,并能正确判断成正比例的量。

过程与方法。

2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。

情感态度与价值观。

3、在主动参与数学活动的过程中,感受数学思考过程的条理性,并乐于与人交流。

二、教材的地位和作用。

这部分教材是在学生学习了比例知识,认识一些数量关系的基础上教学的,让学生结合实际情境认识成正比例的量,学会从变量的角度认识两个量之间的关系,初步体会函数思想,例题提供图表,安排学生观察数据,求比值,发现规律,在此基础上揭示正比例关系。学好这部知识,对以后学习成反比例的量以及中学学习函数有重要意义。

三、学情分析:

学生最容易掌握的是判断有具体数据的两个量是否成正比例,最难掌握的是离开具体数据,判断两个量是否成正比例。

教学重点:正确理解正比例的意义。

教学难点:理解相关联的量;能正确判断成正比例的量。

教学过程。

课前谈话,这节课我们进一步研究数量之间的关系。板书课题:成正比例的量。

一、游戏导入,激发兴趣。

师:同学们,你们玩过石头、剪刀、布的游戏吗?

生:玩过。

生:明白。

师:做好准备,游戏时间50秒,预备-----开始!学生开始游戏,教师巡视。

师:好,时间到。我来了解一下,有赢3次的吗?4次的呢?有赢5次的吗?

如果赢一次我们就记5分。

谁愿意说一说自己赢了几次?得了多少分?如果时间允许,这个游戏可以继续下去。加省略号。

二、引导观察,启发思考。

1、师:请大家仔细观察这张表。

(1)、看看表中有哪两种量?

观察这两种量的变化,你从中发现了什么规律?(请小组讨论,互相交流)。

生1:赢得次数是1,得分是5;赢得次数是2,得分是10;……。

生2:我们再倒过来观察:得分是15,赢得次数是3;……。

生:跟第一次相比,次数增加,得分也随着增加;次数减少,得分也随着减少。

2、师:得分是(),赢得次数是4;得分是50,赢得次数是();…。

看来,只要知道次数,就能知道得分,或者知道得分,就知道赢了几次。

3、师:也就是说,得分随着赢得次数的变化而变化,赢得次数增加,得分也增加,次数减少,得分也随着减少。我们就说赢得次数和得分是两种相关联的量。

4、教师举例引导,学生再举例说明。

判断下表中的两种量是否相关联。

(1)一辆汽车行使时间与所行路程如下表。

三、分组讨论,合作交流。

一辆汽车行使时间与所行路程如下表。

路程随着时间的变化而变化,从表格中你能找到一些不变的东西吗?请同学们独立完成下面的问题。

1、任意写出三个相对应路程和时间的比,并算出它们的比值。

2、比值实际上求得是()。写出求它的数量关系。

请同学们根据上面的问题进行分析,在小组内讨论交流,老师要看看哪个小组的同学合作的最默契,讨论的最认真。

学生四人小组讨论,教师巡视,参与。

小组派代表汇报。

教师总结发言,板书关系式。

时间和路程是两种相关联的量。

路程:时间=速度。

四、联系实际,贴近生活。

一些人买同一种苹果,购买苹果的质量和应付的钱数如下。

想一想,做一做。

(1)、表中有()和()两种相关联的量。

(2)、说说总价是怎样随着数量的变化而变化的?

数量减少,总价也随着()。反之,数量增加,总价也随着()。

(3)、写出两种量中相对应的总价和数量的比,并求出比值。

(4)、比值实际上表示()。写出它们之间的数量关系。

学生交流、反馈并总结。

总价和数量是两种相关联的量,总价随着数量的变化而变化,总价和数量中相对应两个数的比的比值一定,我们就说,总价和数量叫做成正比例的量,它们之间的关系式正比例关系。

4、综合上面的两个例子,判断两种量是否成正比例关系,关键看什么?

课件出示判断正比例的方法:要先看两种量是不是相关联的量,再看相对应的两个量的比的比值是不是一定。

如何用字母表示正比例关系呢?

5、判断游戏中的两个量是不是成正比例。

五、由浅入深,拓展思维。

师:刚才大家学习都很认真,下面老师要来考考大家,你们愿意接受挑战吗?

(一)、判断下面各题中的两种量是否成正比例关系。说明理由。

1、天数一定,每天的烧煤量和烧煤的总量。

2、一本书,已读的页数和未读的页数。

3、圆柱体的高一定,圆柱的体积和底面积。

4、订阅《少年文艺》的人数和总价。

(二)、拓展。

路程、时间、速度。

那么路程一定,时间和速度成正比例吗?

六、全课总结。

成正比例教案篇十三

一、课前交流:

师:课前我们先来猜个成语(出示课件:水涨船高)。

师:谁来给大家说说这个成语的意思?

生:船总是浮在水面上,水面升高,船也跟着就升高了。

师:他解释得非常生动形象,我们今天这节数学课要研究的问题就和这个成语有密切的关系,请接着往下看(出示例1)。

二、观察与思考:

(一)分析例1。

1、出示例1。

文具店有一种彩带,销售的数量与总价的关系如下表。

2、观察表格中,先独立思考,再与小组同学讨论交流以下问题:

(1)表中有哪两种量?

(2)总价是怎样随着数量的变化而变化的?

(3)相应的总价与数量的比分别是多少?比值是多少?

3、反馈交流:

(1)表中有哪两种量?(表中有数量和总价两种量)。

(2)总价是怎样随着数量的变化而变化的?

预设:数量扩大,总价也随着扩大;数量缩小,总价也随着缩小。

师:是啊,从表中我们发现数量扩大,总价也随着扩大;数量缩小,总价也随着缩小。总价随着数量的变化而变化,我们就说总价和数量是两种相关联的量(多媒体出示这句话)。

(3)相应的总价与数量的比分别是多少?比值是多少?

师:我们接着来看。你们求出来了吗?(随着学生的回答,课件出示)。

师:你有什么发现?

预设:比值都是3.5,比值都相等……。

师:是的,他们的比值都是相等的,是3.5没有变化。我们也可以说相对应的总价和数量的比的比值是一定的。(板书一定)。

师:同学们,刚刚,通过我们的学习讨论知道了总价与数量是两种相关联的量,总价是随着数量的变化而变化的',而且总价与相应数量的比值总是一定的。

师:那你知道这个不变的比值实际上就是什么吗?(单价)。

你能用式子表示出总价、数量和单价之间的关系吗?(总价?单价)数量。

师小结:

像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应。

的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

(三)课内练习。

1、出示:一列火车行驶的时间和所行路程如下表:

2、分析。

(1)观察表格,这里出现了哪几种数量?它们是相关联的量吗?为什么?

(2)相对应的路程和时间的比比值分别是多少?这个比值表示什么?你有什么想说的?

3、归纳小结:

出示:成正比例关系的三要素:

a、两种相关联的量。

b、其中一个量增加,另一个量也随着增加;一个量减少,另一个量也随着减少。c、两个量的比值一定。

预设:

三、认识正比例关系图像:

师:同学们结合我们之前学过的折线统计图,你能将这些数据整理成图像吗?

1、想一想:横轴上和竖轴上的数据分别表示什么?

2、老师这里根据表格中的数据,用“描点连线”的方法,整理出来这样一幅图像。请你根据图象回答下面的问题:

(1)、从图中你发现了什么?

生:画出来的是一条斜线。

师:也是什么线?

生:直线。

3、师:通过刚刚的练习,你觉得这样的正比例图像对我们有什么帮助呢?

引导学生小结:

(1)、从这个图像中可以观察到彩带的总价与数量的变化情况,彩带数量增加,总价也随着变大。反之亦然。

(2)利用正比例关系图像,不用计算,可以根据一个量的值,直接找到对应的另一个量的值。

四、回顾与展望:

师:通过本节课的学习,你有什么收获?

【本文地址:http://www.xuefen.com.cn/zuowen/16949419.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档