圆柱表面积教案(专业16篇)

格式:DOC 上传日期:2023-12-02 08:59:10
圆柱表面积教案(专业16篇)
时间:2023-12-02 08:59:10     小编:BW笔侠

教案是教师根据教育教学要求和学生特点而编写的教学计划。教案应该合理运用多种教学方法,提高教学效果。随后是教案范文,供大家学习和参考,希望对大家有所帮助。

圆柱表面积教案篇一

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

掌握圆柱侧面积的计算方法。

:能根据实际情况正确地进行计算。

1.复习圆柱的特征。提问:圆柱有什么特征?

2.计算下面圆柱的侧面积(口头列式):

(1)底面周长4.2厘米,高2厘米。

(2)底面直径3厘米,高4厘米。

(3)底面半径1厘米,高3.5厘米。

3.提问:圆柱的一个底面面积怎样计算?

4.引入新课。

我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

1.认识表面积计算方法。

(1) 请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。

(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

(3)得出公式。

2.教学例2。

出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

3.组织练习。

做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。

5.组织练习。

(1)下面的数用进一法保留整数,各是多少?(口答)

162.3 29.4 3.8 42.6

(2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。

这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。

课堂作业:练习一第5~7题。

圆柱表面积教案篇二

2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。

3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。

4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。

圆柱表面积教案篇三

2.掌握圆柱侧面积和表面积的计算方法.。

3.会正确计算圆柱的侧面积和表面积.。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算.。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题.。

教学过程。

一、复习准备。

(一)口答下列各题(只列式不计算).。

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征.。

二、探究新知。

(一)圆柱的侧面积.。

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.。

(二)教学例1.。

1.出示例1。

例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)。

2.学生独立解答。

教师板书:3.14×0.5×1.8。

=1.75×l.8。

≈2.83(平方米)。

答:它的侧面积约是2.83平方米.。

3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.。

1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.。

2.比较圆柱体的表面积和侧面积的区别.。

(四)教学例2.。

1.出示例2。

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2.学生独立解答。

侧面积:2×3.14×5×15=471(平方厘米)。

底面积:3.14×=78.5(平方厘米)。

表面积:471+78.5×2=628(平方厘米)。

答:它的表面积是628平方厘米.。

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.。

(五)教学例3.。

1.出示例3。

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。

2.教师提问:解答这道题应注意什么?

3.学生解答,教师板书.。

水桶的侧面积:3.14×20×24=1507.2(平方厘米)。

水桶的底面积:3.14×。

=3.14×。

=3.14×100。

=314(平方厘米)。

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)。

答:做这个水桶要用1900平方厘米.。

5.“四舍五入”法与“进一法”有什么不同.。

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.。

三、课堂小结。

圆柱表面积教案篇四

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

教学重难点。

教学难点:圆柱体侧面积计算方法的推导。

教学工具。

ppt课件。

教学过程。

一、检查复习,引入新课(复习圆柱体的特征)。

1、复习圆的周长与面积公式、长方形的面积公式。

2、师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

二、引导探究,学习新知。

(一)教学圆柱表面积的意义。

设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

板书:底面积×2+侧面积=表面积。

要求圆柱的表面积,首先应该计算它的底面积和侧面积。

(二)根据条件,计算圆柱的底面积。

圆柱的底面是圆形,同学们会求它的面积吗?

(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)。

条件:(厘米)r=3d=4c=31.4。

底面积(平方厘米)28.2612.5678.5。

(三)教学圆柱体侧面积的计算。

1、引导探究圆柱体侧面积的计算方法。

(2)小组合作探究。(剪圆柱形纸筒)。

(3)汇报交流研究结果,多媒体课件展示。

(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

2、计算圆柱体的侧面积。

多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。

条件(厘米)h=5h=8h=10。

侧面积(平方厘米)94.2100.4862.8。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

2、学生根据数据进行计算?

3、汇报计算方法及结果,媒体出示结果进行验证。

表面积(平方厘米)150.72125.669.08。

(五)小结:圆柱表面积的意义及计算方法。

三、练习巩固,灵活运用。

1.求下面圆柱的侧面积。

(1)底面周长是1.6m,高是0.7m。

(2)底面半径是3.2dm,高是5dm。

四、总结反思,畅谈收获。

这个课你收获了什么?

板书。

长方形的面积=长×宽。

圆柱表面积教案篇五

2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)。

3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

4、这节课我们就一起来研究“圆柱的表面积”这个问题。

二、探究新知。

1、初步感知。

总结:圆柱所有面面积的总和就是圆柱的表面积。

(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)。

(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

2、侧面积。

(1)小组合作:

请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

(2)学生汇报。

(3)教师总结演示。

(4)推导圆柱侧面积公式。

3、表面积。

(1)总结表面积公式。

圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?

侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)。

三、巩固练习。

1、现在我们自己尝试来算一算这两个圆柱的表面积。

过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

四、总结收获。

同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

请记住同学们善意的提醒,这节课就上到这!

五、板书设计。

侧面积=底面周长×高。

圆柱表面积=s侧=c×h=2πrhs表=2πrh+2πr2。

底面积×2=2πr2。

圆柱表面积教案篇六

1、圆柱底面周长是20厘米,高是10厘米。

2、圆柱底面直径径是6厘米,高是3分米。

3、圆柱底面半径是3厘米,高是10厘米。

二、选择题:

1、甲乙两人分别用一张长12。56厘米、宽9。42厘米的长方形纸用两种不同的方法卷成一个圆柱体,(接头处不重合),那么卷成的圆柱体1。

a高一定相等。

b侧面积一定相等。

c侧面积和高都相等。

d侧面积和高都不相等。

2、把一个棱长是2分米的正方体削成一个最大的圆柱体,它的侧面积是()平方分米。

a。6。28b。12。56c。18。84d。25。12。

3、冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么粉刷树干的面积是指()。

a。底面积b。侧面积c。表面积d。体积。

三、综合练习。

2、是一个圆柱形状的'蛋糕盒,底面直径是20厘米,高是12厘米。

(1)做这样一个蛋糕盒需要多少硬纸板?

四、拓展练习:

思考:如果圆柱的底面周长和高相等,侧面展开是什么形状的?

圆柱表面积教案篇七

目标。

1、知道圆柱侧面积和表面积的含义。

2、通过操作推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

重点。

圆柱侧面积和表面积的计算方法。

难点。

运用所学的知识解决简单的实际问题。

学     习     过     程。

师生笔记。

知识链接:

1、用公式表示出圆的半径、直径、周长、面积之间的关系。

2、圆柱的上下两个底面都是(      ),它们的面积(       )。

3、长方形的面积=        。

长方体的表面积=                。

正方体的表面积=         。

知识超市:

操作:(一)试一试,怎样可以得到圆柱形的侧面展开图?

把圆柱的侧面沿高剪开,展开图是(       ),圆柱的底面周长就是它的(    ),圆柱的高就是它的(     )。

计算圆柱的侧面积实际就是计算(              )。

(1)一个圆柱,底面周长是1.6m,高是0.7m,求它的侧面积。

(2)一个圆柱,底面直径是5cm,高是10cm,求它的侧面积。

操作(二)有两底的圆柱展开后呈什么形状?

圆柱是由(         )和(         )三部分组成的。

圆柱的表面积包括(            )和(           )。

(3)一个圆柱的高是15厘米,底面半径是5厘米,求它的表面积。

我会用:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)。

想:求做这样一顶厨师帽需用多少面料,实际上就是求这顶圆柱形厨师帽的(        ),厨师帽由_________和__________组成。

列式计算:。

达标检测:

圆柱表面积教案篇八

(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)。

(2)指名板演,其他学生独立完成于课堂练习本上。

2、练习二第17题。

先引导学生明确题意,求用彩纸的面积就是圆柱的表面积减去(78.5×2)平方厘米,再组织学生独立练习,集体订正。

3、练习二第13题。

(1)复习长方体、正方体的表面积公式:

长方体的表面积=(长×宽+长×高+宽×高)×2。

(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。

4、练习二第19题。

(1)学生小组讨论:可以漆色的面有哪些?

(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留两位小数。

圆柱表面积教案篇九

教材40页、41页例1、例2、例3及做一做,练习十第2-5题。

素质教育目标。

(一)知识教学点。

2.掌握圆柱侧面积和表面积的计算方法。

(二)能力训练点。

能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题。

教具学具准备。

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。

教学步骤。

一、铺垫孕伏。

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知。

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1。

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3.14×0.5×1.8。

=1.75×1.8。

≈2.83(平方米)。

答:它的侧面积约是2.83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

(1)教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2。

(1)投影片出示例题2、圆柱的几何图形和表面积的展图。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3。

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的.“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

圆柱表面积教案篇十

理解求表面积、侧面积的计算方法,并能正确进行计算。

能灵活运用表面积、侧面积的有关知识解决实际问题。

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。

一、铺垫孕伏。

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知。

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1。

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3.14×0.5×1.8=1.75×1.8≈2.83(平方米)。

答:它的侧面积约是2.83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

3.教学。

(1)教师说明:圆柱的侧面积加上两个底面积就是。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的'面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3。

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

圆柱表面积教案篇十一

圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”,首先我给学生一张长方形美术纸,用这张纸做成一个圆柱体,让学生以小组为单位做出它的底面,看谁的最好,学生的思维很好,给出了多种想法。

方法一:用一张纸盖住圆柱,沿着边缘剪(不会很圆)。

方法二:把圆柱立起来用笔描绘出来地面再剪(不好描,自然不会很圆)。

方法三:用尺子量出直径,算出半径,用圆规画出圆再剪(有点接近了,但是直径不会很精确)。

方法四:把圆柱压扁,量出直径,接着同上做法(误解,这里的直径其实是半个圆的周长)。

方法五:量出美术纸的长,就是底面的周长,由此求出半径,再画圆贴上(很好,能理解侧面积求解的难点)通过这些活动后,再让学生自学表面积的公式,自然水到渠成了。课堂交给学生,会有你意想不到的事情。

圆柱表面积教案篇十二

1)把圆柱形纸筒的侧面沿着它的一条高展开是一个()形,它的长是圆柱的(),它的宽是圆柱的()。如果长6.28厘米,宽3.14厘米,那么纸筒的侧面积是()。

2)一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是( ),表面积是( )。

3)一个圆柱体,侧面展开图是正方形,它的边长是18.84厘米,它的底面半径是()厘米。

4)圆柱体底面半径扩大2倍,高不变,圆柱体的侧面积就扩大()倍。

2、一个圆柱形水池,直径是20米,高6米,水深2米。

a、这个水池占地面积是多少?

b、在池内侧面和池底抹一层水泥,需要抹水泥的面积是多少?

圆柱表面积教案篇十三

教学内容:p21-22页例3-例4,完成“做一做”及练习四的部分习题。

教学目标:

1、在初步认识圆柱的基础上理解圆柱表面积的含义,掌握圆柱表面积的计算方法,会正确计算圆柱表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的.能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

教学难点:运用所学的知识解决简单的实际问题。

教法:启发引导法。

学法:自主探究法。

教具:课件。

教学过程:

一、定向导学(5分)。

(一)导学。

1.指名学生说出圆柱的特征.。

2.口头回答下面问题.。

(1)怎样求圆的周长与面积?

(2)怎样求圆柱的侧面积?

3、导入课题。

(二)定向。

揭示学习目标。

2、会正确计算圆柱表面积,能解决一些有关实际生活的问题。

二、自主探究(10分)。

(一)填空。

1、因为圆柱体有两个()和一个(),所以。

圆柱表面积教案篇十四

知识与技能:

过程与方法:经历猜想、操作、验证、应用的学习过程,提高学生解决问题的能力。

情感、态度、价值观:感受数学与生活的密切关系,增强学习数学的兴趣与数学应用的意识。

[教学重点]理解求表面积、侧面积的计算方法,并能正确进行计算。

[教学难点]能灵活运用表面积、侧面积的有关知识解决实际问题。

[教学手段]。

1、教学方法:观察法、分析法、讨论法。

2、学习方法:观察、实验、合作、交流。

3、教学准备:多媒体课件。

[媒体说明]。

[教学时间]40分钟。

[教学过程]。

一、复习旧知(口答):

1、(1)已知半径或直径,怎样求圆的周长和面积?

(2)长方形的面积=。

2、什么是表面积?怎样求长方体、正方体的表面积?

二、创设情境,激发兴趣。

1、教师出示一圆柱形茶叶筒:

要制作这样一个茶叶筒,至少需要多少材料?对于这个问题,你是怎样想的?

2、拿出自备的圆柱体,仔细观察,你有什么发现?(圆柱体是由两个平面和一个曲面围成的立体图形。)。

3、你能否复制出一个同样大小的圆柱体?你打算怎么做?

三、合作探究,学习新知。

1、观察、猜测:

将圆柱的表面展开,会得到什么图形?(两个底面是一样大的圆形,侧面是一个长方形或平行四边形。)。

2、动手操作:(分组讨论后再动手操作,并汇报交流)。

1组:我们用铅笔在圆柱的侧面画出了一条高,然后把它放倒在纸上,以这条高为起点开始向前滚一圈,并在纸上做好结束的标记,这是圆柱的侧面,再把两个底印在纸上画出两个圆,合起来就能知道大概用多少纸了。

2组:我们有个大圆柱体,但没有那么大的纸能让它滚一圈,怎么办?

师:对于2组遇到的实际情况,谁有更好的办法来解决?

3组:我们发现可以用长方形纸卷成圆柱体,所以就想到把圆柱体的侧面沿一条线剪开,结果发现它正好是个长方形,再加上两个圆形的底面就可以了。

生(齐声):是圆柱体的高。

部分学生认同3组同学的发现,纷纷效仿跟着操作。

老师将3组学生动手操作的结果贴在黑板上。

3、推导圆柱的侧面积计算公式。

师:这个展开的长方形与圆柱体的哪个面有关系?有什么关系?

生:长方形的面积等于圆柱体的侧面积。

师:长方形的长、宽与圆柱体的什么有关?

生:长方形的长是圆柱体的底面周长,长方形的宽是圆柱体的高。

(板书)长方形面积=圆柱体侧面积。

长×宽=底面周长×高。

师:如果用s侧表示圆柱体的侧面积,用c表示底面周长,h表示高,那么s侧=ch。

师:如果已知底面半径为r,圆柱体侧面积也可以写成什么?(s侧=2πr8226;h)。

师:还有没有不同的想法?

4组:如果不沿高去剪,而是沿一条斜线来剪,结果就不是长方形,而是平行四边形。

5组:我们小组剪出的侧面是一个正方形,它的底面周长和高相等。

师:那你们能计算出这个侧面积吗?需要测量哪些数据?(高和直径或底面周长)。

4、反馈练习。(课件出示)。

求下面各圆柱的侧面积:

(1)c=6.28dm,h=3dm;(2)r=5cm,h=5cm;。

课件出示圆柱的表面展开图,学生根据提示填空。

因为圆柱的表面展开后可得到:两个底面是大小相等的(),一个侧面是()或()形,所以圆柱的表面积就等于两个圆面积加上一个长方形的面积。即:

6、练兵场。(课件出示)。

(1)s侧=25.12cm,s底=12.56cm;(2)d=6dm,h=40cm.

四、指导练习,及时反馈。

1、学生独立完成教材第六页练一练第一题的第一小题,集体订正。

2、教材第六页试一试:

重点交流“无盖水桶”的表面积,要计算的是哪几个面的面积。

3、教材第六页练一练第2题:

重点理解“压路机前轮转一周,压路的面积就是圆柱的侧面积”。

五、课堂小结,布置作业。

1、这节课你有什么收获?

2、课后计算自己做的圆柱体,看看每个圆柱各需要多大的材料。

[板书设计]。

圆柱表面积教案篇十五

教学目标:

2、进一步掌握圆柱表面积的计算方法,能根据实际情况正确计算,培养学生解决简单的实际问题。

3、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

教学重点。

教学难点。

对策:

加强数学问题与生活问题的沟通与转化。教学预设:

1、

提问:上节课我们学习了圆柱的侧面积和表面积。(板书课题:圆柱的侧面积和表面积)怎样求圆柱的侧面积?(板书:圆柱的侧面积=底面周长乘高)。

如果底面周长没有直接告诉我们,还可以告诉我们什么条件也能求侧面积?怎样求?再引导学生体会:如果不知道底面周长而告诉我们半径或直径,也需先求出底面周长后才能求侧面积。

2、

怎样求圆柱的表面积?(板书:圆柱的表面积=侧面积+2个底面积)。

告诉我们什么条件可以求圆柱的表面积?怎样求?

还可以告诉我们什么条件也能求表面积?怎样求?

1、

第24页上第5题:读题后,请学生分析:题中已知什么,要求的是什么?独立思考解题方法,指名说解题方法,体会要结合生活实际情况来确定要计算的是什么,本题中的灯笼在生活中是只要计算一个底面积的。(多请几个学生说,说到基本上掌握方法为止,去年教这个内容时先让学生计算再理解解题思路的,结果有不少学生解题思路错误,在计算上浪费了很长时间)再要求计算:指名板演,集体练习,评析校对,指导学生计算时分几大步完成,计算步骤不要分得太细,也不要列一个大综合算式。

2、

第24页上第6题:处理方法基本同第5题,但要结合第5题的教学引导学生注意:1、题中关键词“无盖”,否则会方法错误;2、计算结果的处理有后续要求。教育学生对这样的细节问题要细心、敏感。

3、

第24页上第7题:引导学生读题后可出示纸做的博士帽教具,帮助学生理解解题思路,请学生独立思考后指名交流并解答。最后提醒学生注意其中的单位变化情况。

4、

第24页上第8、9题:读题后独立思考,分析交流解题思路,说明想法,引导学生学习将生活问题转化为数学问题。再独立完成在作业本上。

5、

补充:填空:

给一块边长是6.28分米的正方形铁皮配上一个底面,做成一个圆柱形铁皮水桶。

(1)6.28÷3.14÷2求的是(                            )。

(2)12×3.14求的是(                            )。

(3)6.28×6.28求的是(                            )。

(4)6.28×6.28+12×3.14求的是(                            )。

6、

(如学生有困难可用粉笔操作演示)三、全课总结。

圆柱表面积教案篇十六

2、填空:

(1)底面半径是2分米,高是7.3分米。

(2)底面周长是 18.84米 ,高是 5米 。

4、选择正确答案的序号填在括号里。

a、底面积           b、底面周长    c、底面半径。

16、一个无盖的圆柱形铁皮水桶,底面直径是 0.4米 ,高是 0.8米 ,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)。

【本文地址:http://www.xuefen.com.cn/zuowen/16964382.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档