初中几何教案范文(16篇)

格式:DOC 上传日期:2023-12-03 07:53:07
初中几何教案范文(16篇)
时间:2023-12-03 07:53:07     小编:GZ才子

教案是教师为了实施一堂课而制定的教学计划和指导材料。要编写一份完美的教案,首先需要明确教学目标,明确教学目标有助于教师确定教学内容和教学方法。教案是教师在教学过程中制定的一种有针对性的教学计划,它是教学过程的规划和组织,有助于教师更好地准备教学,提高教学效果。要编写一份完美的教案,首先要明确教学目标,确保目标具有一定的可操作性。以下是小编为大家整理的优秀教案范例,供大家参考和借鉴。

初中几何教案篇一

教学目标:

知识与技能:通过实物,经历探索物体与图形的形状、大小、位置关系的过程,能认识常见的几何图形,并能用自己的语言描述常见几何图形的特征。

过程与方法:在探索几何图形的形状、位置和大小的过程中,建立空间观念,发展几何直觉,能从实物中抽象出几何体。

情感态度与价值观:体验在实际生活中几何图形的广泛存在与应用;认识几何图形与生活的紧密联系。

教学重点:认识几何图形。

教学难点:从具体事物中抽象出几何体。

教材分析:本节课是七年级第一节课,所涉及到的几何图形是以后继续学习的基础,为进一步学习圈定了范围。由于学生的头脑中,实物与几何图形是两种割裂开的信息,所以在教学中,应建立好两者之间的联系,并进而发展几何直觉。

教学方法:引导发现,师生互动。

教学准备:多媒体课件、学生身边的实物。

课时安排:1课时。

环节教师活动学生活动设计意图。

引入新课导语:(略)。

提出要求:

1、请大家看章前页,看谁能画出北京天坛主体建筑物的图画?

2、感到无从下手的同学,看一下虚景图形,它们是你小学学过的哪种图形?

教师先引导会画的学生口述画法,之后,用多媒体课件展示,把建筑物的各部分分割成小学学过的几何图形:圆锥、圆柱、三角形、长方形等。

学生动手画图。

分层教学。

学生从多渠道增加感知。

激情导入,激发学生求知欲。

体会客观事物与数学知识间的关系。

一1、上面各实物图片中,有多少个物体?

2、这些物体的哪些形状类似?属于哪种几何体?你能说出理由吗?

3、你能说出现实生活中还有哪些实物具有上面几何体的特征?

教师归纳:

对于各种物体,如果不考虑它们的颜色、材料、质量等,而只注意它们的形状(如方的、圆的)、大小(如长度、面积、体积等)和位置(如平行、相交、垂直等),就得到我们今后要学习的几何图形。把下面的实物与相应的几何体用线连接起来:

学生思考,小组交流,讨论完成三个题目。

独立完成,

动手操作。

从学生生活中的实物入手,充分利用学生的知识经验。

把数学知识具体化为生活实物,使学生展开联想。

新课探究。

二1、各组讨论,上边练习中的六种几何体可以分哪几类?

2、总结出这样分类的理由。

引导学生分两类:一类是长方体、棱柱、立方体;另一类是球体、圆柱、圆锥。

分类依据:第一类表面都是平面,第二类表面有曲面。(用课件展示平面与曲面)分组讨论,组内选一名代表回答,各组在全班交流结果。使学生接触分类思想,加深学生对几何体认识。

新课探究。

三1、把下面几何图形分成几类?

2、说出分类理由:

用课件展示几何图形:

归纳:几何图形包括立体图形和平面图形。有些立体图形中含有平面图形,有些立体图形不含平面图形。

你能用六根火柴和小量橡皮泥组成4个三角形吗?能组成4个正方形吗?学生主动思考,踊跃作答。

学生总结。

学生们积极思考,来回答这一具有挑战性的问题。便于学生主动学习。

使学生交流各自学习结果。

加强知识间联系。

激励学生学习。

课堂总结1、怎样从实物抽象出几何图形?

2、几何图形可分为哪两类?

3、平面图形与立体图形有何关系?

教师简要点评,从实物抽象几何图形时,去掉颜色、材料、质量等特征,而只考虑形状、大小和位置等方面。有些立体图形含有平面图形,而有些立体图形不含平面图形。学生各组讨论,相互交流各自看法。

教师参与,师生互动,激励学生回答、反思。学生尝试小结,疏理知识,养成反思习惯,提高概括能力。

课堂反馈。

1、课堂检测(包括基础题和能力提高题)。

2、用几何图形设计一个机器人的图画。独立完成。

学习致用巩固新知。

建立教学知识与实物间联系,培养学生创造力。

板书设计。

1.1几何图形。

立体图形。

去(颜色,材料)取(形状、大小、位置)。

实物几何图形含或不含。

加(颜色、材料)取(形状、大小、位置)。

平面图形。

教学反思:

本课有两个“依据”:1、依据学生已有知识经验,让学生动手画天坛主体建筑草图,让学生从实物中抽象出小学学习过的几何体;2、依据教材,充分利用课体,充分利用课本的每一组素材,并适时适度的赋予素材新的利用价值。在教学过程中,由于问题的客观原因,亦或学生本身的主观原因,总有一些学生主动性不强。

初中几何教案篇二

3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量

教学过程(师生活动)设计理念

活中仅有这些“以前学过的数”够用了吗?下面的例子

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

密性,但对于学生来说,更多

地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

问题4:请同学们举出用正数和负数表示的例子.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

初中几何教案篇三

经历从不同方向观察物体的活动过程,体会出从不同方向看同一物体,可能看到不同的结果;能识别从不同方向看几何体得到相应的平面图形。

通过观察能画出不同角度看到的平面图形(三视图)。

体会视图是描述几何体的重要工具,使学生明白看待事物时,要从多个方面进行。

学会从不同方向看实物的方法,画出三视图。

画出三视图,由三 视图判断几何体。

本节内容是研究立体图形的又一重要手 段,是一种独立的研究方法,与前后知识联系不大,学好本课的关键是尊重视觉效果,把立体图形映射成平面图形,其间要进行三维到二维这一实质性的变化。在由三视图还原立体图形时,更需要一个较长过程,所以本节用学生比较熟悉的几何体来降低难度。

情境引入 合作 探究

课件,多组简单实物、模型。

:1课时

环节 教 师 活 动 学生活动 设 计 意 图

境 教师播放多媒体课件,演示庐山景观,请学生背诵苏东坡《题西林壁》, 并说说诗中意境。

并出现:横看成岭侧成峰,

远近高低各不同。

不识庐山真面目,

只缘身在此山中。

观赏美景

思考“岭”与“峰”的区别。 跨越学科界限,营造一个崭新的教学学习氛围,并从中挖掘蕴含的数学道理。

1、教师出示事先准备好的实物组合体,请三名学生分别站在讲台的左侧、右侧和正前方观察,并让他们画出草图,其他学生分成三组,分别对应三个同学,也分别画出 所见图形的草图。

2、看课本13页“观察与思考”。

图:

你能说出情景的先后顺序吗?你是通过哪些特征得出这个结论的?

总结:通过以前经验,我们可知,从不同的方向看物体,可能看到不同图形。

3、从实际生活中举例。

观察,动手画图。

学生观察图片,把图片按时间先后排序。

利用身边的事物,有助于学生积极主动参与,激发学生潜能,感受新知。

让学生感知文本提高自学能力。

利于拓宽学生思维。

二 1、感知文本。学生阅读13页“观察与思考2”,

图:

2、上升到理性知识:

(1)从上面看到的图形叫俯视图;

(2)从左面看到的图形叫左视图;

(3)右正面看到的图形叫主视图;

3、练一练:分别画出14页三种立体图形的三视图,并回答课本上 三个问题。(强调上下左右的方位不要出错) 学生阅读,想象。

学生分组练习,合作交流。 把已有经验重新建构。

感性知识上升到理性知识 。

体会学习成果,使学生产生成功的喜 悦。

新课探究三 1、连线,把左面的三视图与右边的立体图形连接起来。

主视图 俯视图 左视图 立体图形

2、归纳:多媒体课件演示

先由其中的两个图为依据,进行组合,用第三个图进行检验。

学生自己先独立思考,得出答案后,小组之间合作交流,互相评价。

以小组为单位讨论思考问题的方法。

把由空间到平面的转化过程逆转回去,充分利用本课前阶段的感知,可以降低难度。

课堂反馈

1、考查学生的基础题。

主视图 俯视图 学生独立自检

学生总结出以俯视图为基础 ,在方格上标出数字。

简单知识,基本方法的综合

课堂总结

1、学习到什么知识?

2、学习到什么方法?

3、哪些知识是自己发现的?

4、哪些知识是讨论得出的?

学生反思

归纳 让学生有成功喜悦,重视与他人合作。

附:板书设计

1.4 从不同方向看几何体

教学反思:

初中几何教案篇四

2、使学生初步学会运用切割线定理及其推论.。

3、通过对切割线定理及推论的证明,培养学生从几何图形归纳出几何性质的能力;

使学生理解切割线定理及其推论,它是以后学习中经常用到的重要定理.。

学生不能准确叙述切割线定理及其推论,针对具体图形学生很容易得到数量关系,但把它用语言表达,学生感到困难.教学过程:

一、新课引入:

二、新课讲解:

最终教师指导学生把数量关系转成语言叙述,完成切割线定理及其推论.。

2关系式:pt=pa·pb。

数量关系式:pa·pb=pc·pb.。

练习一,p.128中。

练习二,p.128中。

求证:ae=bf.。

本题可直接运用切割线定理.。

求o的半径.。

解:设o的半径为r,po和它的长延长线交o于c、d.。

(+r)=6×14r=(取正数解)答:o的半径为.。

三、课堂小结:

为培养学生阅读教材的习惯,让学生看教材p.127—p.128.总结出本课主要内容:

2.通过对例3的分析,我们应该掌握这类问题的思想方法,掌握规律、运用规律.。

四、布置作业:

1.教材p.132中10;2.p.132中11.。

初中几何教案篇五

学会几何图形的画法。

1、学习椭圆、矩形、圆角矩形工具的使用方法。

2、能运用画图工具作简单的规则图形。

教学重点、难点

“椭圆”、“矩形”、“圆角矩形”等画图工具的使用方法。

(讲解上节课学生的作业,点评学生的作品)

一、引入

在上课前老师先请你们看一幅画(演示图画),请你们仔细观察一下,这个房子分别是由哪些图形组成的?(长方形、正方形、圆角长方形、椭圆)那我们应该怎样来画这座房子呢?今天我们就来学习。出示课题:画方形和圆形(板书)

二、新课

1.矩形工具(画房子的主体)

首先我们应该画出房子的主体,是一个长方形,我们可以用工具箱中的矩形工具来画。(师演示)

(1)单击工具箱中的“矩形”工具按钮。

(2)在画图区适当的位置按下左键,以确定房子主体的左上角位置,再向右下角拖动,满意后,松开左键,这样房子的主体就画好了。请一位同学上来演示用矩形工具画一扇门。(注意门的位置)问:房子的窗户是什么形状的`?正方形我们怎么来画呢?请同学们自己在书上找到答案(读一读)。

在房子主体内确定好窗户的位置后,按下shift键,再拖动鼠标,满意后松开鼠标,窗户就画好了。

下面请同学们练习,教师巡视指导。

2.圆角矩形工具(画房子的房顶、烟囱)房顶是什么形状的?

我们可以用工具箱中的“圆角矩形”工具来画。它的画法与“矩形”工具是一样的,谁来试一下,把房顶和烟囱画出来。

学生演示(确定好房顶的位置后,拖动出一个合适的圆角长方形)。

3.椭圆工具(画烟)

烟囱里冒出的烟是椭圆形的,我们可以用工具箱中的“椭圆”工具来画,先单击“椭圆”工具,然后从烟囱口向右上方,分别拖动画出三个椭圆。(师演示)

学生练习(把剩余部分画好)

练习

用多边形工具画出书上p38的图形,保存在指定的文件夹。

初中几何教案篇六

(1)经历探究物体的形状与几何体的关系过程,能从现实物体中抽象得出立体图形.

(2)经历立体图形与平面图形的转换过程,掌握一些简单的立体图形与平面图形的互相转化的技能.

(3)经历对点、线、面、体关系的研究的数学活动过程,建立平面图形与立体图形的联系.

(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、射线、线段和角的表示方法;掌握角的度量方法.

(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,探索线段与线段之间、角与角之间的数量关系.

(6)认识线段的等分点,角的平分线、角角和补角的概念.

(1)会用掌握的几何体知识描述现实物体的形状,在探索立体图形与平面图形的关系中,发展空间观念.

(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理.

(3)学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考.

(4)能在现实物体中,发现立体图形和平面图形.

(5)能在具体的现实情境中,发现并提出一些数学问题.

(6)通过小组合作、动手操作、实验验证的方法解决数学问题.

3.情感态度与价值观.

(1)积极参与数学活动的过程,敢于面对数学活动中的困难,并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题.

(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,体验数学活动中探索性和创造性,感受丰富多彩的图形世界.

1.重点:

(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;初步建立空间观念.

(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义.

(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.

2.难点:

(1)立体图形与平面图形之间的互相转化.

(2)从现实情境中,抽象概括出图形的性质,用数学语言对这些性质进行描述.

3.关键:

(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣.

(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.

4.1.1几何图形。

教学内容。

课本第116~120页.

初中几何教案篇七

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两角相等。

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等。

三、证明两直线平行。

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

四、证明两直线互相垂直。

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

五、证明线段的和、差、倍、分。

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明角的和、差、倍、分。

1.作两个角的和,证明与第三角相等。

2.作两个角的差,证明余下部分等于第三角。

3.利用角平分线的定义。

4.三角形的一个外角等于和它不相邻的两个内角的和。

七、证明两线段不等。

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

八、证明两角不等。

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

九、证明比例式或等积式。

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

初中几何教案篇八

2.区别凸多边形与凹多边形.。

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.。

(2)区别凸多边形和凹多边形.。

2.难点:

多边形定义的准确理解.。

一、新课讲授。

投影:图形见课本p84图7.3一1.。

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.。

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

(1)它们在同一平面内.。

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.。

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.。

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.。

如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)。

2.多边形的边、顶点、内角和外角.。

3.多边形的对角线。

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.。

让学生画出五边形的所有对角线.。

4.凸多边形与凹多边形。

看投影:图形见课本p85.7.3—6.。

5.正多边形。

由正方形的特征出发,得出正多边形的概念.。

各个角都相等,各条边都相等的多边形叫做正多边形.。

二、课堂练习。

课本p86练习1.2.。

三、课堂小结。

引导学生总结本节课的相关概念.。

四、课后作业。

课本p90第1题.。

初中几何教案篇九

本考点含圆周、圆弧、扇形等概念,圆的周长和弧长的计算,圆的面积和扇形面积的计算三个部分,考核要求是:(1)理解圆周、圆弧、扇形等概念;(2)掌握圆的周长和弧长的计算;(3)掌握圆的面积和扇形面积计算,理解与掌握圆的周长和弧长、圆的面积和扇形面积公式是解决有关问题的关键,在解有关问题时,要注意:(1)正确的识别圆心、半径和圆心角:(2)进行有关计算时,中间过程可适当保留;(3)注意精确度的要求(尤其要注意精确度的要求,在).

考核要求:(1)能对线段中点、角的平分线进行文字语言、图形语言、符号语言的互译;(2)初步掌握和余角、补角有关的计算。注意:余角、补角的定义中,只和角的大小有关,和位置无关。

考点56:长方体的元素及棱、面之间的位置关系,画长方体的直观图。

长方体的元素及棱、面之间的位置关系是直线之间、直线和平面之间及平面和平面之间位置关系的缩影,基本要领比较多,掌握这一知识点的关键在于从概念出发,结合长方体的直观图来理解这些位置关系,画长方体的直观图主要掌握“斜二侧画法”,关键是理解12条棱之间的位置关系。

考点57:图形平移、旋转、翻折的有关概念。

图形平移、旋转、翻折是平面内图形运动的三种基本形式,主要性质是运动前后相比,只是图形的位置发生了变化,但图形的大小和形状并没有改变(即运动前后的两图形全等),决定图形平移的主要因素是移动的方向和移动的距离,平移前后的位置是解决平移问题的关键,图形旋转的主要因素是旋转中心和旋转角、旋转过程中的不动点即为旋转中心,任意一对对应点与旋转中心的连线所成的角为旋转角,翻折的主要因素是折痕,联结任意一对对应点所成的线段都被折痕垂直平分。

考点58:轴对称、中心对称的有关概念和的关性质。

轴对称是指两个图形中某一个沿一条直线翻折后与另一个图形重合;中心对称是其中一个图形绕旋转180度后能与另一个图形重合,联结对称点的连线都经过对称中心,并且被对称中心所平分,要确定两个成中心对称图形的对称中心,只要将其中的两个关键点与它们的对应点相连,连线的交点即为对称中心。

考点59:画已知图形关于某一直线对称的图形、已知图形关于某一点对称的图形。

考点60:平面直角坐标系的有关概念,直角坐标平面上的点与坐标之间的——对应关系。

直角坐标系把平面分成了六部分;第一、二、三、四象限和轴、轴。各部分的符号特征分别为:第一象限(+、+),第二象限(-、+),第三象限(-、-),第四象限(+、-);轴上的纵坐标为0,轴上的点横坐标为0,直角坐标平面上的点与坐标——对应,即:任意一个点的坐标唯一确定,同时任意一个坐标所对应的点也唯一确定,确定一个点的坐标往往需要确定点到、轴的距离和点所在的象限。注意:坐标(a、b)是一个有序实数对,即当时,(a,b)和(b,a)表示的点完全不同。

考点61:直角坐标平面上的点的平移、对称以及简单图形的对称问题。

考点62:相交直线的有关概念和性质。

考点63:画已知直线的垂线、尺规作线段的垂直平分线。

考点64:同位角、内错角、同旁内角的概念。

考点65:平行线的判定与性质。

考点66:三角形的有关概念、画三角形的高、中线、角平分线、三角形外角的性质。

考点67:三角形的任意两边之和大于第三边的性质、三角形的内角和。

考点68:全等形、全等三角形的概念。

考点69:全等三角形的判定与性质。

考点70:等腰三角形的性质与判定(含等边三角形)。

考点71:命题、定理、证明、逆命题、逆定理的有关概念。

考点72:直角三角形全等的判定。

考点73:直角三角形的性质、勾股定理及其逆定理。

考点74:直角坐标平面内两点间的距离公式。

考点75:角的平分线和线段的垂直平分线的有关性质。

考点76:轨迹的意义及三条基本轨迹(圆、角平分线、中垂线)。

考点77:多边形及其有关概念、多边形外角和定理。

考点78:多边形内角和定理。

考点79:平行四边形(包括矩形、菱形、正方形)的概念。

初中几何教案篇十

1.本节课的教学内容。

3.教材的重点和难点。

二、目的.分析。

根据《教学大纲》的要求,教材编写意图及学生的实际,制定了如下教学目标:

三、教学过程分析。

四、教法分析。

根据引言课教学的特点及初一年级学生的心理特点,按照这个年龄阶段的学生由具体过渡到抽象的认识规律,采用的教法主要为:

五、评价分析。

初中几何教案篇十一

在日常生活中,幼儿经常接触到圆形、三角形、正方形这些图形,并对它们产生了浓厚的兴趣。为此我设计了此活动,通过让幼儿运用视觉、运动觉等来感知它们的特点,使幼儿对这三种几何图形的认识较为深入,并得以巩固。

使幼儿初步认识三角形、圆形、正方形,培养幼儿对几何图形的兴趣和观察能力。

教学重点、难点

教学重点:正确说出图形

教学难点:说出图形特点

1、 在周围环境中布置色彩鲜艳的几何图形。

2、在场地上画一个大大的三角形、圆形和正方形(可容纳全班幼儿)。

开始部分:手指操稳定幼儿情绪

1、引导幼儿在室内找。如正方形的玻璃窗、圆形的钟面、三角形的搁架等。

2、启发幼儿在自己身上找。如圆圆的扣子,衣服上的几何形图案,放在口袋里的正方形的小手绢等。

3、启发幼儿动脑想一想,说一说在日常生活总还有那些物品是圆形、三角形、正方形的。

4、鼓励幼儿在活动区找一找。

结束部分:游戏《找朋友》

幼儿在场地上自由地边拍手跳边念《找朋友》的儿歌:“找找找,找朋友,我要找个好朋友。找到谁,谁就是我的好朋友。”念完后,老师接着说:“找图形,圆形是你的好朋友。”然后小朋友就赶快跳到圆形里面。游戏反复进行。老师可以分别说找正方形或三角形,幼儿跳到相应的图形里。

活动延伸:请幼儿用火柴棒、细电线拼摆圆形、正方形、三角形。

。为此我设计了此活动,通过让幼儿运用视觉、运动觉等来感知它们的特点,使幼儿对这三种几何图形的认识较为深入,并得以巩固。 活动目标 使幼儿初步认识三角形、圆形、正方形,培养幼儿对几何图形的兴趣和观察能力...

初中几何教案篇十二

初中几何是中学数学的一门重要课程,对于学生们来说,学好初中几何是十分必要的。在学习初中几何的过程中,我不断摸索,不断探索,积极思考,终于得出了一些体会和心得。下面,我将与大家分享我的学习初中几何的心得体会。

第二段:认真听讲,注重细节。

初中几何的学习最基本的就是认真听讲,注重细节。几何图形海量而复杂,每一个细节都可能关系到答案的正确性。因此,学习初中几何必须非常细心。听讲是基础,所以我在课堂上一定要静心听讲,对老师讲解的内容做好笔记。对于几何图形,我更注重将所有细节都考虑清楚,因为细节总是决定成败的关键。

第三段:多练习,多思考。

学习初中几何需要不断的练习和思考。练习多了,可以掌握每种几何图形的特点及其求解方法,同时也能训练自己的思维能力。思考多了,则能更好掌握几何问题的解题思路,能够更准确地通过图形推导并建立出解法。

第四段:举一反三,拓展思维。

在学习初中几何的过程中,多举一些不同的例子来练习,可以让思维更为灵活。在解决几何问题的过程中,学会举一反三,将所学到的知识进行转换运用,拓展自己的思维能力,让自己的视野更加广阔。

第五段:友好合作,团队配合。

学习初中几何可以与同学合作学习。在课上合作讨论题目,能够拓宽自己的思路,分享不同的解题思路和方法。同时,在学习的过程中,也要尊重他人,乐于贡献自己的经验和知识,这样才能更好地完成团队任务,取得优异的成绩。

结语:

总之,学习初中几何需要兼顾细节,多加思考,善于探索,同时也需要积极参与和团队配合。只有通过这些方面的努力,才能够真正学好初中几何,为以后的学习生涯打下更加坚实的基础。

初中几何教案篇十三

1、复习巩固对正方形、三角形和圆形的认识。

2、培养幼儿参与活动的积极性和思维的灵活性。

1、小兔手偶一个、魔术袋一个。

2、不同大小、不同颜色的圆形、三角形、正方形若干。

3、纸制小路(上面镂刻不同形状、不同大小、不同颜色的图形)。

1、创设情境,引起幼儿参与活动的兴趣。

森林里,小兔的房子被大风吹倒了,我们一起帮它造一座房子吧。

2、帮小兔造房子,复习几何图形。

引导幼儿从魔术袋里摸出不同图形,并用摸出的几何图形给小兔造房子,复习圆形、三角形、正方形。

3 、帮助森林里的小动物送建房子的材料,进一步巩固对几何图形的认识。

“森林里其他小动物的房子也被大风刮倒了,让我们也来帮他们选一些建房子的材料吧。”

自由选择不同的几何图形,并进行分类,巩固对图形的认识。

4、游戏:为动物朋友修路。

利用不同的几何图形进行对应练习,让幼儿能够不受图形颜色,形状、大小的影响,正确进行区分。

5、走一走林间的小路,结束活动。

初中几何教案篇十四

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类。

3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7、高线、中线、角平分线的意义和做法。

8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9、三角形内角和定理:三角形三个内角的和等于180°。

推论1直角三角形的两个锐角互余。

推论2三角形的一个外角等于和它不相邻的两个内角和。

10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11、三角形外角的性质。

(2)三角形的一个外角等于与它不相邻的两个内角和;。

(3)三角形的一个外角大于与它不相邻的任一内角;。

(4)三角形的外角和是360°。

一、平行四边形的定义、性质及判定。

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行。

(2)平行四边形的对角相等,邻角互补。

(3)平行四边形的对角线互相平分。

3、判定:

(1)两组对边分别平行的四边形是平行四边形。

(2)两组对边分别相等的四边形是平行四边形。

(3)一组对边平行且相等的四边形是平行四边形。

(4)两组对角分别相等的四边形是平行四边形。

(5)对角线互相平分的四边形是平行四边形。

4、对称性:平行四边形是中心对称图形。

二、矩形的定义、性质及判定。

1、定义:有一个角是直角的平行四边形叫做矩形。

2、性质:矩形的四个角都是直角,矩形的对角线相等。

3、判定:

(1)有一个角是直角的平行四边形叫做矩形。

(2)有三个角是直角的四边形是矩形。

(3)两条对角线相等的平行四边形是矩形。

4、对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定。

1、定义:有一组邻边相等的平行四边形叫做菱形。

(1)菱形的四条边都相等。

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角。

(3)菱形被两条对角线分成四个全等的直角三角形。

(4)菱形的面积等于两条对角线长的积的一半。

2、s菱=争6(n、6分别为对角线长)。

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形。

(2)四条边都相等的四边形是菱形。

(3)对角线互相垂直的平行四边形是菱形。

4、对称性:菱形是轴对称图形也是中心对称图形。

四、正方形定义、性质及判定。

1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、性质:

(1)正方形四个角都是直角,四条边都相等。

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形。

(4)正方形的对角线与边的夹角是45°。

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形。

3、判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等。

(2)先判定一个四边形是菱形,再判定出有一个角是直角。

4、对称性:正方形是轴对称图形也是中心对称图形。

五、梯形的定义、等腰梯形的性质及判定。

2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等。

4、对称性:等腰梯形是轴对称图形。

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

九、多边形。

初中几何教案篇十五

我们知道数学是研究数量关系和空间形式的一门科学。几何则是侧重研究空间形式。而初中几何则是几何学的基础。很多学生都认为:几何、几何、尖尖角角,不好看、不好学。多年来我和学生谈到几何时,多数学生都有同感。我认为几何是最具有形象性的一门学科。尤其是初中所学的平面几何更具形象性,和实际生活有较大的联系。下面就笔者近年来教学的经验谈谈学好初中几何的几点方法:

一、学好概念。

1.明确概念的建立,弄清几何的实质。

几何的概念是在对现实世界中物体之间的位置关系和数量关系抽象中建立起来的。例如:在宇宙中,太阳发出的光是按射线方向传播的,当阳光照到某个星球上的一点时,形成一条线段;又如钟表中的失真和分针形成的角;所以向射线、线段、角等等的概念都可以在生活实例中抽象出来。这样一来我们学习起来就会容易多了。

2.结合视图培养加深概念的理解。

如角的概念是由一点引出的两条射线所组成的图形,这个概念产生于下图;

3.要对邻近概念进行比较。

在几何当中一个概念形成以后相应的就有邻近的概念的产生,所以要经常进行比较加深理解和记忆。例如:线段ab中点m的邻近概念就是线段ab上的'几等分点。如直角的概念是指锐角、钝角、平角等等。只有这样在直观形象上和本质属性上进行比较,并且注意它们之间变通的条件才能更好的掌握概念。

二、要学好几何语言。

几何语言是几何中的专门术语,几何语言产生于对图形的正确认识和简练的叙述,有其确切的含义。在几何语言中,要求图形中的元素位置关系准确,概念清楚,先后顺序明确,语言简练。对几何语言的学习一般有:

1.训练学生能用语言来描述平面上的点、线、角等元素之间的位置关系及图形特征。

2.经常用一定的数学术语和简练准确的文字语言来表达几何问题。如“点在直线上”“点m是线段ab的中点”等等。

3.经常用数学术语、数学符号来准确地表达一个几何问题。几何中的术语、关联词有特殊的含义,要仔细阅读推敲、认真观察图形。需要持之以恒的训练,才能运用自如,得心应手。

三、要善于直观的思维。

根据几何图与实物结合的特点,自己可以动手、动脑用纸板或木板等制作一些图形,进行仔细的观察分析,这样可以帮助我们对平面几何的定理、公里、性质的理解,这样的直观思维可以培养学生的观察力。

四、要富有想象能力。

几何的问题有很多既要凭借图形,又要进行抽象思维。例如,1.几何中的“点”没有大小,只有位置。而现实生活中的点和实际画出来的点就有大小。所以说几何中的“点”就存在于大脑思维中。2.“直线”也如此,可以无限延伸有谁能把“直线”画到地球之外?3.“射线”也是这样可以无限的延伸等等。这些都存在于人们大脑思维中。

所以我们要有丰富的想象能力,这也是解决几何问题的一个重要能力。

五.要善于学习、善于总结。

几何和其他学科相比,系统性强,所以要经常把学到的知识进行归纳、整理、概括、总结。例如:证明两条直线平行,除了利用定义外,还有哪些方法证明?两条直线平行后又有哪些性质?在现实生活当中又有哪些地方可以利用平行线?只要我们细心观察,不难发现,教室墙壁两边边缘,门框、桌子、玻璃板……处处存在着平行线。这样只要我们认真学习、勤于思考、独立完成一些有关习题,在练习时不断总结,善于在问题中分离出一些问题,就会学习好初中几何。

总之:初中几何内容丰富、涉及面广、变化无穷、莫测高深。在初学几何时切忌好高骛远,应注重平时的积累,循序渐进。

我想学生只要掌握以上几点方法,勤奋好学,就一定能学好初中几何。

(作者单位:131413吉林省乾安县大遐畜牧场中学)。

初中几何教案篇十六

初中数学是每个学生必须要学的科目之一,而几何是初中数学中的难点之一。在我学习初中数学的过程中,几何始终是令我头疼、难以理解以及难以掌握的一门学科。然而,随着对几何知识的不断学习以及练习,我最终也逐渐掌握了几何的奥秘,在这里我将分享我对初中几何的心得体会。

第二段:学习方法。

几何最重要的是掌握基本知识,这意味着你需要掌握各种图形、角度、面积、周长、体积等基本概念,并能够在问题中正确运用这些概念。同时,我认为,在掌握基本知识的同时还需注重思维的拓展,尝试从不同的角度去考虑几何问题,逐渐培养自己的几何思维能力。另外,考试前的复习同样重要,需要加强对基本概念的复习,多做几道相关题目,及时纠正自己的错误。

第三段:注意技巧。

在初中几何中,掌握一些有效的解题技巧对我们的解题效率和解题水平提高是有很大帮助的。例如,在求面积的时候,可以采用分割图形、运用正方形面积公式、运用相似三角形的性质等方法,而在求角度的时候,可以采用角度和为180度的性质、角平分线的定理等方法。

第四段:将几何与日常生活相结合。

生活中常常充满了各种几何问题,例如地图上的测量距离,建筑设计、装饰、摆放,甚至是一个简单的水杯也具有几何形状,教材中的例题也常常包含了生活中的应用。将几何与日常生活相结合,不仅能够更好地理解知识点,还能够增加对几何的兴趣与热爱,以及培养解决实际问题的能力。

第五段:总结。

初中几何学习的过程并不容易,但只要我们保持良好的态度,勤奋学习和不断练习,我们就能够掌握几何的核心内容,并获得优异的成绩。此外,学习几何也有助于培养我们的空间思维能力、逻辑思维能力和解决实际问题的能力,这些能力将对我们未来的发展有着重要的帮助。

【本文地址:http://www.xuefen.com.cn/zuowen/17061169.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档