初中几何数学小论文(优秀19篇)

格式:DOC 上传日期:2023-11-09 08:04:04
初中几何数学小论文(优秀19篇)
时间:2023-11-09 08:04:04     小编:字海

环保是我们每个人的责任,我们需要采取行动保护地球。如何有效地管理金钱,实现财务自由和稳定的生活?对于写总结的朋友来说,以下是一些范文,供您参考,或许会有所启迪。

初中几何数学小论文篇一

本课题选自人民教育出版社出版的《(义务教育初级中学教科书)信息技术》—书。

第一单元第二课画基本几何图形,第一课是认识几和画板的启动和退出方法,窗口结构,熟悉认识工具箱等内容,第二课是画点,画线段,射线,直线和画圆,还有改变线型和颜色并保存图形。学好本课对本章中的所有内容的学习都具有重要的作用。

学习者特征分析。

几何画板的引用是计算机专业八年级开设的专业课程。由于学生的基础和学习成绩存在差距,学生的认知能力、思维能力的不同和数学基础差会对教学效果有影响,所以考虑适当的分层教学、小组协作、交流、探究,完成教学过程。

1.学会画点,线段,射线,直线和画圆。

2.能够移动,删除绘图板上的图形。

3.掌握设置线型和颜色的基本方法。

通过灵活引用工具箱的点工具,直尺工具和圆规工具图标,能画出简单的一些几何图形。

情感态度与价值观:

1.激励学生融入自己的思想去创作,感受运用信息技术创造作品的乐趣。

2.提高学生画和欣赏几何图形的水平,形成和保持对信息技术的求知欲,养成积极主动地学习态度。

画出5种基本的几何图形。

分析图形。

人民教育出版社的课本。

环境与媒体:

机房,投影机。

课型:

新授。

教学策略设计:

本课主要教学方法有“创设情境法”“任务驱动法”“实例演示法”等。通过情境导入,以任务为主线、以学生为主体,创造学生自主探究学习的平台,使学生变被动学习为主动愉快的学习。

教学过程:

引入。

同学们注意了吗?今天我提前5分钟来到教室,你们知道这是为什么吗?昨天晚上我弟弟让我猜一个谜语,我很感兴趣这个谜语,所以我想一大早来让你们也猜一猜。

新课。

老师提出关于点的一个谜语。谜语总结完了以后,在电脑上显示很多有趣的图形,通过激发学生的兴趣导入新课。

布置任务。

我们已经学过这些图形的画法,和基本性质,那我们现在开始用电脑来分析这些图形的画法和性质。开始画一画让同学们看。

阅读操作步骤,并欣赏,发现问题,及时指出。

练一练。

制作一些点,线段,射线,直线和圆。

相互协作,共同完成练习。

教师在班内巡视,帮助有疑问的同学。

教师选择部分有代表性的作品进行展示。抽出几个好的作品,让学生给其他学生们演示操作。

学生自主探究。

学生展示自己的作品,并谈谈怎么做的想法。

学生上机操作。

巩固练习。

自然界和社会中有许许多多的几何图形,这些图形给人们带来美的享受,用几何画板可以创建自己的“几何实验室”。

小结。

通过这两节课,学生知道了很多新知识关于几何画板。

初中几何数学小论文篇二

“变换”是几何画板中的重要命令,这里的技巧是非常多的,要变换,就要有所依据,所以在实施变换之前,一定要先“标记”,可以标记中心,可以标记向量,可以标记比等等,选定要变换的图形,按照标记,进行相应的变换。其他软件的变换很多都不符合数学的要求,有时我们需要复制一个图形,并且要求复制的图形会随着原始图形的变化而变化,这一点绝对不是ctrl+c和ctrl+v所能实现。如下图就是利用变换命令制作的等于已知角的另一个角。

二、颜色填充技巧。

在很多的绘图软件中都提供了颜色填充的工具,在几何画板中却没有在工具栏中提供这一工具,其实这是它的特点,因为几何画板中的图形是要变动的,填充颜色的部分也要随之而变化。

首先,要选定添加颜色的图形,如图形是一个圆,则选择菜单“构造”中的“圆内部”;如图形是一个多边形,则选择菜单“构造”中的“多边形内部”;如图形是一段弧,选择菜单“构造”中的“扇形内部或弓形内部”。这里要说明一点,为多边形添加颜色,一定要选择多边形的顶点,选择边是没有用的。

三、绘制点的方法。

前面提到的画点工具,可以画出两种点,一种是自由点,即可以不受任何限制地到处移动的点,还有一种是可以在一定的范围内移动的点,例如,画好一个圆后,在圆上画上一个点,那么这个点只能在这个圆上移动,不能离开此圆。

下面是另外一种点的画法,选择“绘图”中的“绘制点”,在出现的窗口中可以输入要画的点的坐标,在上方有两种选择,一种是“直角坐标系”,选择它就表示该点是在直角坐标系里面;第二种是“极坐标系”,选择它就表示该点是在极坐标系里面。

四、利用数学思想制作基本图形。

在数学中,有很多重要的图形,像圆、圆弧、椭圆、双曲线、抛物线等等,在几何画板中如果想使用某些图形,需要我们结合画板的基本功能和数学的有关知识来制作,下图是一个利用几何画板制作的椭圆。

利用“轨迹”命令可以得到下图中的椭圆,其他无用的对象最后可以隐藏起来。其中的数学原理是到两个定点距离之和为一个常数的点的轨迹是椭圆。具体教程可参考:怎样利用椭圆定义构造椭圆。

五、工具栏的使用。

几何画板启动之后左边是默认的工具栏,从上至下依次是:选择工具、点工具、圆工具、画线工具、多边形工具、文本标签工具、标记工具、信息工具、自定义工具。要使用工具,只要用鼠标的左键选中相应的工具即可。

当在工作区画出某个图形时,图形都有系统默认的名称,如果看不到,可以用“文本工具”在图形上单击一下即可,再单击,名称消失;如果想修改名称,则双击名称,在出现的窗口中输入新的名称就可以了。另外,在工具栏中有一些隐藏的工具,选择工具有“平移、旋转、缩放”,画线工具有“画线段、画射线、画直线”,调出隐藏工具的方法是左键单击对应按钮,按住左键不放,在右侧出现其他工具,再将鼠标箭头移到想选择的工具上,松开左键即可。

初中几何数学小论文篇三

很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

标记。

这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

引申。

难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一样,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

分析综合法。

如证明角相等的方法有1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

归纳总结。

很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。对于证明题,有三种思考方式:

正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

逆向思维。

顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。

如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

正逆结合。

对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

初中几何数学小论文篇四

在学习兴趣培养中的应用。

很多学生对初中数学的学习缺乏必要的兴趣,对数学课程有着十分明显的厌恶心态。之所以会出现这种情况,与初中数学知识内容的繁琐性、抽象性以及枯燥性有着十分紧密的联系。而为了让学生对数学知识有全新的认知,便需要使用几何画板软件,将一些看起来较为枯燥的数学知识通过全新的方式表现出来,从而获得更加良好的理解。

比如二次函数是初中数学教学中的重难点,很多学生会感到无所适从,为了让学生对二次函数有更加新颖的了解,便可以将函数通过图像的方式,在几何画板中表现出来,如下图所示:

在图一中,表现的是一个二次函数y=ax2+bx+c的相关参数变化情况,从图像中可以非常直观地了解到随着a、b、c三值的变化,函数图像所产生的相应变化,对于学生学习二次函数以及了解其本质有着十分重要的意义。通过这种方式,一方面让学生对枯燥的数学知识重新产生了浓厚的兴趣,另一方面也让教学变得更加规范,几何画板下的二次函数图像要比传统的黑板上作画精确许多。

帮助日常教学活动的进行。

几何画板在初中数学教学中,很多情况下具有不可替代的功能,特别是在一些几何部分的知识教学环节,能够起到很好的教学帮助作用。以初中数学中一个几何体上各条棱的平行与垂直关系为例,在传统的教学过程中,如果缺乏了相应的教辅示范工具,那么学生往往会很难理解教学内容,空间想象力不够丰富的学生甚至完全不能进入学习中。而几何画板则为这种情况提供了非常好的帮助,让教学工作得以顺利开展。如下图便是对正六面体的各条棱空间关系分析:

在图二中,将六面体的各个顶点分别命名为a、b、c、d以及a’、b’、c’、d’,通过几何画板中图形的旋转,将六面体全方位展示在学生面前,学生可以很直观地观察到每一条棱与其他棱之间的空间平行、垂直、异位等关系,从而为后续的进一步教学打下良好的基础。另外,在《图形的翻折运动》、《圆与圆的位置关系》等课程教学中,几何画板所具有的图形运动与转换功能均能够为教学工作带来极大的帮助,让教学的效率得到更大程度的提升。

注重学生思维能力的培养,训练创新思维。

数学教学既是一种数学知识的传授活动,也是学生数学思维的训练活动。传统的数学教学偏重于前,使学生在数学教学中成为接受前人所发现的数学知识的容器,把知识视为理所当然,不去考虑由来,这极大地限制了学生创新思维的发展。解决这一问题的关键是教育内容的革新,教育观念的更新和教学方法的创新。建构主义学习理论认为,学习不是一个被动吸收,反复练习和强化记忆的过程,而是一个以学生已有知识和经验为基础,通过个体与环境的相互作用,主动建构意义的过程。因此,在数学教学中,应通过对数学符号组合的分析、图形的证明、计算的变化等数学活动,使学生在逻辑思维、抽象思维、对称美欣赏、表象创造、联想变化等方面训练,从而培养学生思维的敏捷性、变通性、直觉性和独创性等创新思维的优良品质。教师不在于把知识的结构告诉学生,而在于通过对数学教材巧安排,对问题妙引导,创设一个良好的思维情境,引导学生发现,探究和总结,帮助学生在走向结论的过程中发现问题,探索规律,习得方法,引导学生主动地从事观察﹑实验﹑猜测﹑验证﹑推理与合作交流。

自主是创新精神的起点,在创造性的教学中应把学生视为主体,通过为学生提供自主发问、讨论交流尝试解决问题的机会,给学生充足自主学习的时间,并及时指导纠正学生“不当”为“探究”,促使学生从一开始就进入创新思维状态中,以探的学习方法,共同得到结论。打破“老师讲,学生听”的常规教学,变传授索者的身份去发现问题,总结规律。通过交流的方式分析问题,解决问题并能进行知识迁移,不仅能将“游离”状态的数学知识点凝结成优化的数学知识结构,而且能使模糊杂乱的数学思想清晰化和条理化,有利于思维的发展,同时还可以获得美好的情感体验。

抓住时机,因势利导,激起学生强烈的求知欲。

你有什么妙法呀!快点教给我们吧!”于是抓住这有利的教学时机,说:“好!这就是我们今天所要学习的能被3整除的数的特征。”学生情绪高昂地学习了新知识。快下课时,又布置了这样的作业,回家后和爸爸妈妈做这个游戏,看他们会怎样说。结果第二天,好多学生都讲了他们的爸爸妈妈表扬他的话。

3打造数学魅力课堂。

运用语言、态势、板书等吸引学生注意力,掌握讲课节奏。

在课堂教学中,通过语速的快慢、语音的抑扬顿挫、讲课节奏的张弛和语言的幽默来集中学生的注意力,其学习效果是不言而喻的。而恰当地运用态势、表情、手势、动作等把学生的视线吸引过来,给学生以动感,避免长时间不停歇地盯住黑板,也是消除学生疲劳、厌倦的一个有效方法。值得一提的是,在努力活跃课堂气氛的同时,还要注意维持课堂纪律,避免因个别学生违纪而影响了教学效果。而且,教师在上课前应有良好稳定的情绪,尽快进入讲课的角色,才能形成轻松活跃的课堂气氛。

开展评比活动,活跃课堂气氛。

在平时自己的课堂上,我还没有意识到开展小组与小组、学生与学生之间的评比活动,对活跃课堂有多么重要。,通过多次听课交流,我知道了:开展评比,可使学生不仅学会合作学习,还会活跃课堂气氛。人人都渴望被表扬。初中学生好胜心强,乐于表现自己,应创造条件,让学生积极参与竞争,在竞争中提高学生对数学学习的兴趣。

提高练习质量,减轻学生负担。

在教学过程中,在独立思考、尝试体验这一环节,我通常会安排三个层次的练习,即通过“围绕重点集中练、变换形式灵活练、新旧结合综合练”,将练习带进课堂.通常情况下,一节课的题目要分成适当的几个组,学一组练一组.练习的形式多样,自学、观察、实验、猜想、朗读、讨论、制作等都是必要的练习.通过练习,一方面让学生现场暴露知识和能力的缺陷;另一方面让学生在练习中产生困惑,学生练过之后就迫切希望老师讲解,他们希望知道正确的解题方法和解题思路.通过这种方式获得“成就感”和解决自己的困惑。此时,教师的讲解不宜面面俱到,只需有的放矢,重在点拨。“详讲”“略讲”或“不讲”要合理分配,突出重点。

4培养学生自主学习数学。

要培养学生认真完成作业的习惯。

作业是学生最基本、最经常的独立学习活动,是学生巩固知识,形成知识技能的主要手段。因此,必须养成认真完成作业的习惯。怎样才能养成此习惯呢?笔者认为应从以下二个方面进行:(1)养成专心作业和独立完成作业的习惯。课堂作业由于有老师督促检查,一般还比较认真,而在家庭作业中常常出现许多不良的习惯。例如,做作业时,做做玩玩,心神不定;拼命赶速度;依赖家长或照抄同学的作业等。这些都严重影响了作业的质量。为此,教师在布置家庭作业时,除对学生提出要求外,还应同家长取得联系,共同督促指导学生认真独立地完成家庭作业。(2)养成认真审题,仔细计算的习惯。审题是正确解题的前提,学生作业中的许多错误往往是没有认真审题造成的。

因此,要教给他们认真审题的方法。对于计算题,先要检查题目里的数字、运算符号有没有抄错,然后确定先算什么、后算什么,有没有简便的方法;对于应用题,特别是复合应用题要多读几遍,弄清已知条件和问题是什么,条件中哪些是直接的,哪些是间接的,再分析问题与条件、条件与条件之间有什么联系,最后列式;对于判断题,要弄清每一个字、词或符号的意义,并同已掌握的知识作比较,以便作判断。审题以后,要仔细地计算。如需打草稿的,草稿也要力求有条理、清楚,以便检查。

要培养学生敢于想的习惯。

爱因斯坦说:“提出一个问题往往比解决一个问题更重要。”肯尼思?h?胡佛也说:“整个教学的最终目标是培养学生正确提出问题和回答问题的能力。任何时候都应鼓励学生提问,遗憾的是,提问课中常常是按照教师问学生答的反应模式进行。”这种用提问来代替学生的思维,让学生沿着教师的问题思路,到达知识彼岸,使学生学习始终被教师绑定,扼杀了学习的主动性与创造性。数学是思考性极强的一门学科,在数学教学中,必须使学生积极开动脑筋,乐于思考,勤于思考,善于思考,逐步养成独立思考的习惯。要使学生独立思考,首先,要选好思考的内容。思考内容一般在知识的关键处,通过设计提问的形式出现。

例如,教学分数乘以整数的法则时,可引导学生根据一系列问题阅读课本,并进行思考。如:2/9×3的意义是什么?2/9×3转化成2/9+2/9+2/9后怎样计算?根据是什么?当得到2/9×3=(2×3)/9后,将等式左边的算式与右边的结果比较,想一想,分数乘以整数应怎样计算?这样通过一个个问题,沟通了新旧知识的联系,使学生在教师的指导下,独立地掌握计算法则,培养了独立思考的习惯。为了养成独立思考的习惯,在提供思考内容的同时,还必须给予足够的思考时间。在一般情况下,当老师提出问题后,智力水平较高的同学能很快举手回答,这时为了照顾到中、下生,应该多留一些时间让大家思考,待已有相当多的同学举手后,再根据情况,让不同层次的同学回答。也可让那些没有举手的同学回答,让他们说说怎样想的,有什么困难,以促进他们开动脑筋想问题。不过在提问时,应尽量避免只与个别成绩好的同学对话,而置大多数同学于不顾。并且还要注意调动全班学生的积极性。其次,要鼓励学生质疑问难。因为任何发明创造都是从发现问题、提出问题开始的。如果学生在提问中提出一些离奇的问题,作为教师不应扼杀,而应加强引导、鼓励,并和同学一起分析、讨论。经过独立思考,学生就可能产生新的见解,有了见解就会有交流的愿望,有了交流又可以产生新的思考,从而使学生乐于思考,勤于思考,善于思考,逐步养成独立思考的习惯。

初中几何数学小论文篇五

摘要:随着科技的进步,几何画板成为数学课堂中一种非常重要的辅助教学手段,这在很大程度上提高了课堂教学效果。本文结合初中数学教学实践,对几何画板在课堂教学中的应用进行了探索研究,提出了几点教学建议。

几何画板作为一种辅助教学工具,以其自身的优势在数学课堂中发挥了积极的作用。本文结合教学实践,对几何画板在初中数学教学中的应用进行了探究。

在传统几何教学中,一般都是教师在黑板上画出一个几何图形,然后通过推理、验证、在黑板上画线等方式,来验证边、角、线段之间的关系,这样的过程实际上是让学生被动接受知识的过程,没有真正调动学生的主动性,更无法在学生脑海中形成直观、生动的印象,只能提高几何知识的抽象性,让学生对几何敬而远之,极大地压制了学生的学习兴趣。

二、精确绘制几何图形,充分展示几何内涵。

由于几何画板所做出的图形具有很强的动态性,并且能够在运动过程中保持几何各个要素之间的精确关系,并且对数学知识和本质内涵进行精确的表达,所以教师要不断提高自身的信息技术素养,善于运用信息技术实施教学,全面提高课堂教学效率。例如,在教学二次函数时,在传统教学中,教师为了让学生掌握二次函数的顶点、开口方向、对称轴等要素的变化,需要黑板上画出抛物线的图像,并进行理论方面的讲解,还要画出各种不同的交叉图形。但是由于图形的抽象性和静态化,使得学生不能很好的理解与消化。此时,如果借助多媒体技术进行演示,则可以化抽象为形象,化静态为动态,用动态图形将抛物线形状随着系数的变化而变化的情况清晰呈现出来,从而降低知识的难度。同时,还可以让学生自主操作,这样不但可以激发学生浓厚的学习兴趣,而且可以开发学生的智力,让学生经历知识的形成过程,加深学生对知识的印象,提高学生对数学知识的应用能力。

三、引入数形结合思想,培养学生的空间想象能力。

我国著名数学家华罗庚曾经说过:“数缺形时少直觉,形缺数时难入微。”数形结合思想是一种非常重要的学习思想,在众多数学思想方法中,数形结合为重中之重,无论在函数部分还是几何部分都有着非常重要的体现。在传统教学中,教师往往利用黑板作图法实施数形结合思想的导入,但是黑板作图呆板无趣,难以激发学生的学习兴趣。所以在信息技术背景下,教师可以运用几何画板,为学生提供充分展示数形结合思想的平台,让学生产生耳目一新之感。运用几何画板,可以测量各种数值,展示各种函数运算。当图形发生变化时,可以将与之相对应的数据展现在学生面前,这样的教学方法所取得的效果是传统教学模式无法比拟的。借助几何画板可以为数形结合思想提供便捷通道,不但能够绘制图形,还能提供动画模型,为图形的变化增加动感因素,增强知识的直观性和形象性,便于学生找到解决方法的有效途径。

四、加强数学实验教学,鼓励学生自主研究。

几何画板是一种简单易学的操作软件,教师可以利用空闲时间教会学生使用几何画板,让学生在课堂上自己动手操作,并在操作过程中观察、发现、感受、验证,促使学生在“做中学”,以激发学生的学习兴趣,提高学生的学习效率。为此,教师要积极打造适合进行实验的环境,加强数学实验教学,引导学生参与其中,激发学生的自主意识,提高学生的实践能力。在现行数学教材中,几乎每个章节都设置了数学实验,而数学实验则需要学生充分发挥自身的主观能动性,提高自身的动手能力。例如,先用几何画板画出一个任意三角形,再画出三角形的三条中线,并说出其中的规律,之后再拖动三角形其中一个顶点随意改变三角形的形状,看看这个规律是否发生改变。通过自主动手探究的过程,可以激发学生的自主意识,提高学生的观察能力和总结能力,让学生在研究过程中找到乐趣,树立学生的自信心,满足学生的成就感。总之,作为初中数学教师,必须要从思想上认识到几何画板的优势和作用,并熟练掌握几何画板的操作应用,根据数学教学内容的实际需要和学生的实际情况,合理有效地应用几何画板,提高初中数学教学的效果,促进学生更好地掌握和应用所学的数学知识,实现课堂教学目标。

参考文献:

[1]孙云飞.浅谈几何画板在函数教学中的应用[j].中国教育信息化,(8).

[2]胡广斌.巧借几何画板提高学生学数学的兴趣[j].改革与开放,2012(14).

[3]吴红军.“几何画板”在初中代数教学中应用例析[j].理科考试研究,(6).

[4]王洁.几何画板在数学课堂上的应用实例[j].新课程学习:中,(12).

[5]徐东.“平移”的教学分析与教学策略――用几何画板优化教学[j].数学教学通讯,2014(1).

初中几何数学小论文篇六

经历从不同方向观察物体的活动过程,体会出从不同方向看同一物体,可能看到不同的结果;能识别从不同方向看几何体得到相应的平面图形。

通过观察能画出不同角度看到的平面图形(三视图)。

体会视图是描述几何体的重要工具,使学生明白看待事物时,要从多个方面进行。

学会从不同方向看实物的方法,画出三视图。

画出三视图,由三视图判断几何体。

本节内容是研究立体图形的又一重要手段,是一种独立的研究方法,与前后知识联系不大,学好本课的关键是尊重视觉效果,把立体图形映射成平面图形,其间要进行三维到二维这一实质性的变化。在由三视图还原立体图形时,更需要一个较长过程,所以本节用学生比较熟悉的几何体来降低难度。

情境引入合作探究。

课件,多组简单实物、模型。

:1课时。

环节教师活动学生活动设计意图。

境教师播放多媒体课件,演示庐山景观,请学生背诵苏东坡《题西林壁》,并说说诗中意境。

并出现:横看成岭侧成峰,

远近高低各不同。

不识庐山真面目,

只缘身在此山中。

观赏美景。

思考“岭”与“峰”的区别。跨越学科界限,营造一个崭新的教学学习氛围,并从中挖掘蕴含的数学道理。

1、教师出示事先准备好的实物组合体,请三名学生分别站在讲台的左侧、右侧和正前方观察,并让他们画出草图,其他学生分成三组,分别对应三个同学,也分别画出所见图形的草图。

2、看课本13页“观察与思考”。

图:

你能说出情景的先后顺序吗?你是通过哪些特征得出这个结论的?

总结:通过以前经验,我们可知,从不同的方向看物体,可能看到不同图形。

3、从实际生活中举例。

观察,动手画图。

学生观察图片,把图片按时间先后排序。

利用身边的事物,有助于学生积极主动参与,激发学生潜能,感受新知。

让学生感知文本提高自学能力。

利于拓宽学生思维。

二1、感知文本。学生阅读13页“观察与思考2”,

图:

2、上升到理性知识:

(1)从上面看到的图形叫俯视图;

(2)从左面看到的图形叫左视图;

(3)右正面看到的图形叫主视图;

3、练一练:分别画出14页三种立体图形的三视图,并回答课本上三个问题。(强调上下左右的方位不要出错)学生阅读,想象。

学生分组练习,合作交流。把已有经验重新建构。

感性知识上升到理性知识。

体会学习成果,使学生产生成功的喜悦。

新课探究三1、连线,把左面的三视图与右边的立体图形连接起来。

主视图俯视图左视图立体图形。

2、归纳:多媒体课件演示。

先由其中的两个图为依据,进行组合,用第三个图进行检验。

学生自己先独立思考,得出答案后,小组之间合作交流,互相评价。

以小组为单位讨论思考问题的方法。

把由空间到平面的转化过程逆转回去,充分利用本课前阶段的感知,可以降低难度。

课堂反馈。

1、考查学生的基础题。

主视图俯视图学生独立自检。

学生总结出以俯视图为基础,在方格上标出数字。

简单知识,基本方法的综合。

课堂总结。

1、学习到什么知识?

2、学习到什么方法?

3、哪些知识是自己发现的?

4、哪些知识是讨论得出的?

学生反思。

归纳让学生有成功喜悦,重视与他人合作。

附:板书设计。

1.4从不同方向看几何体。

教学反思:

初中几何数学小论文篇七

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等。

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等。

证明两直线平行。

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

初中几何数学小论文篇八

摘要:在中学数学教学中利用《几何画板》辅助教学,可以创设更富有启发性的教学情境,设计学生动手做数学的实验环境,能灵活自如地进行变式教学,提高课堂教学效果。

关键词:形象化动态化整合化思维能力。

《几何画板》是目前应用最为广泛的一个几何学教学软件。几何画板最初只应用于几何学和物理学等学科的教学。现在得到广大中学数学教师和学生喜爱。它利用“几何元素在动态状态下保持几何关系间的不变性”这一原理,为平面几何、解析几何、射影几何等学科提供了一个强有力的教学辅助工具。

1.形象化:《几何画板》是探索数学奥秘的强有力的工具,利用这个画板可以做出各种神奇的图形。比如制作动态正弦波、各种函数曲线和数据图表等。教学中若使用常规工具(如纸、笔、圆规和直尺)画图,画出的图形是静态的,很容易掩盖一些重要的几何规律。而使用几何画板,可以画出有几何约束条件的几何图形。另外,《几何画板》可以在图形运动中动态地保持几何关系,可以运用它在变化的图形中发现恒定不变的几何规律。比如用画点、画线工具画出一个三角形后,作出它的三条角平分线、中线、中垂线,可以用鼠标任意拖动三角形的顶点和边,就可以得到各种形状的三角形,这个动态的演示,也可以用于验证“无论三角形如何变化,其三条中线总是交于一点”。

2.动态化:利用《几何画板》运动按钮——“动画”和“移动”功能经过巧妙的组合后,所制作出的点、线、面、体都可以在各自的路径上以不同的速度和方向进行动画或移动,可以产生良好、强大的动态效果,并且所度量的角度或线段的长度及其他的一些数值也可以随着点、线、面、体的运动而不断地发生变化,非常接近于实际,可以更好地达到数形结合,给学生一个直观的印象,起到良好的教学效果。

3.整合化:随着信息技术的发展,涌现出了powerpoint、f1ash、authorware、visualbasic以及几何画板等一些对促进数学教学有着很大的作用的软件,为信息技术与数学课程的整合提供了有效的平台。然而作为课件创作人员,使用单一的制作软件开发教学软件总是存在不足。数学课件的制作中可以使多种软件整合使用,几何画板可被flash调用、authorware调用、powerpoint调用。

二、几何画板在培养学生的能力方面的优势。

几何画板的很多不同于其他绘图软件的特点为教学过程中提出问题、探索问题、分析问题和进一步解决问题提供了极好的外部条件,为培养学生的能力提供了极好的工具。

1.培养学生的思维能力。在教师精心的设计下,恰当地利用《几何画板》的演示,协助学生思考而不是代替学生思考,可促进学生思维的发展。在椭圆的离心角的教学中,椭圆的半径为终边的角与椭圆离心角容易混淆。若利用《几何画板》,不仅可以使学生把这两个角的关系辨析清楚,而且电脑动态显示的优势抓住了时机,有助于发展学生的思维能力。

2.培养学生的探索、观察能力。“探索是数学的生命线”。用《几何画板》进行探索思考、观察,使学生的想象力得以发挥,其显示功能通过动态的演示轨迹,增强学生感性认识,化抽象的事物为具体的事物。

3.解决许多带参数的轨迹问题,培养学生分类讨论的能力。在画板的帮助下很多需要分类讨论的带参数的问题变得简单,让学生们在思考过程中“兴奋”起来,学生对参数的改变引起轨迹的变化的认识也就更深刻了,分类讨论的思想迎刃而解。

4.培养学生解决实际应用问题的能力。应用的广泛性是数学的又一特点,数学教学中注重应用。应用题往往难在对实际问题的数学化。而运用画板进行辅助教学将易于揭示其数学本质,有助于增强学生的数学应用能力。

总之,在中学数学教学中利用《几何画板》辅助教学,可以创设更富有启发性的教学情境,设计学生动手做数学的实验环境,能灵活自如地进行变式教学,提高课堂教学效果;还可以启发学生更积极地思考,引导学生自己发现和探索?使教师的“讲”更多地由学生积极参与的活动所代替。学生由“听讲”“记笔记”的被动学习方式更多地变为观察、实验和主动、积极的学习方式,从而达到知识、能力和素质的全面提高。

参考文献:。

1.高荣林主编.几何画板课件制作与实例分析.北京:高等教育出版社,.

2.张献国.利用几何画板培养学生能力.兵团教育学院学报,.02.

初中几何数学小论文篇九

(1)经历探究物体的形状与几何体的关系过程,能从现实物体中抽象得出立体图形.

(2)经历立体图形与平面图形的转换过程,掌握一些简单的立体图形与平面图形的互相转化的技能.

(3)经历对点、线、面、体关系的研究的数学活动过程,建立平面图形与立体图形的联系.

(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、射线、线段和角的表示方法;掌握角的度量方法.

(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,探索线段与线段之间、角与角之间的数量关系.

(6)认识线段的等分点,角的平分线、角角和补角的概念.

(1)会用掌握的几何体知识描述现实物体的形状,在探索立体图形与平面图形的关系中,发展空间观念.

(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理.

(3)学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考.

(4)能在现实物体中,发现立体图形和平面图形.

(5)能在具体的现实情境中,发现并提出一些数学问题.

(6)通过小组合作、动手操作、实验验证的方法解决数学问题.

3.情感态度与价值观.

(1)积极参与数学活动的过程,敢于面对数学活动中的困难,并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题.

(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,体验数学活动中探索性和创造性,感受丰富多彩的图形世界.

1.重点:

(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;初步建立空间观念.

(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义.

(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.

2.难点:

(1)立体图形与平面图形之间的互相转化.

(2)从现实情境中,抽象概括出图形的性质,用数学语言对这些性质进行描述.

3.关键:

(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣.

(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.

4.1.1几何图形。

教学内容。

课本第116~120页.

初中几何数学小论文篇十

经历观察、分析、交流的过程,逐步提高运用知识的能力、

提高学生的观察、分析能力和对图形的感知水平、

会求反比例函数的解析式、

反比例函数图象和性质的运用、

一、情景导入,初步认知。

1、反比例函数有哪些性质?

复习上节课的内容,同时引入新课、

二、思考探究,获取新知。

1、思考:已知反比例函数y=的图象经过点p(2,4)。

(1)求k的值,并写出该函数的表达式;

(2)判断点a(-2,-4),b(3,5)是否在这个函数的图象上;

分析:

这种求解析式的方法叫做待定系数法求解析式、

2、下图是反比例函数y=的图象,根据图象,回答下列问题:

(1)k的取值范围是k0还是k0?说明理由;

(2)如果点a(-3,y1),b(-2,y2)是该函数图象上的两点,试比较y1,y2的大小、分析:

通过观察图象,使学生掌握利用函数图象比较函数值大小的方法。

初中几何数学小论文篇十一

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

初中几何数学小论文篇十二

角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。

角的分类:

(1)锐角:小于直角的角叫做锐角。

(2)直角:平角的一半叫做直角。

(3)钝角:大于直角而小于平角的角。

(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。

(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。

(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°。

初中几何数学小论文篇十三

3、三角形内角和定理三角形三个内角的和等于180°。

4、推论1直角三角形的两个锐角互余。

5、推论2三角形的一个外角等于和它不相邻的两个内角的和。

6、推论3三角形的一个外角大于任何一个和它不相邻的内角。

7、全等三角形的对应边、对应角相等。

8、边角边公理有两边和它们的夹角对应相等的两个三角形全等。

9、角边角公理有两角和它们的夹边对应相等的两个三角形全等。

10、推论有两角和其中一角的对边对应相等的两个三角形全等。

11、边边边公理有三边对应相等的两个三角形全等。

12、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等。

13、定理1在角的平分线上的点到这个角的两边的距离相等。

14、定理2到一个角的两边的距离相同的点,在这个角的平分线上。

15、角的平分线是到角的两边距离相等的所有点的集合。

初中几何数学小论文篇十四

根据初一学生年龄,能力特点,对点、线、面、体以及几何图形、平面图形、立体图形等概念,教学中要借助于教具、模型、实物、图形等具体描述,先得到直观的感性认识,在感知基础上,培养学生的抽象思维。从小学学过的线段、三角形、正方形、圆柱图形以及面积和体积的计算,说明早已学习了一些几何知以。学生对几何就有一种“老朋友”的亲切感。然后鼓励学生只要勤奋努力地学习,我们完全可以把它学好,树立学几何的信心。

上到初中,几何跟小学的也差不多,只是不单纯只是认识某些几何图形,而且要学习它的`构成,它的特点,这就要求他们要多开动脑筋,发展空间想像能力,如:通过手电筒或探照灯“射”出的光束,说明射线的意义,行进中的火把、飞行中的萤火虫等实例,认识点动成线、线动成面、面动成体等等。比如学到锥、柱、球的时候,必须先制作好模型,这样才能更好的让学生们直观感受到几何体,先让他们在脑海中树立这些几何体的形象,然后再拆分开来看它的构成,包括线、面的特点。在画三视图的时候,拿出正方体让学生们动手摆出所要求的几何体并上前从不同的方向看它,然后画出它的三视图,然后依据老师画的俯视图摆出相应的几何体,多次反复,最后总结经验,可以让学生更能记住,更形象生动有趣,又有动手能力。

初中生对几何很多还是停留在识别阶段,不会用数学语言去描述,比如:什么是平行线?他们能知道怎样的两条线是平行线,可是不会准确的去描述它。还有是“只知其然,不知其所以然”,在垂线段最短的知识点学习时,他们都能看出垂线段是最短的线段,却不能说出为什么,经过老师提示之后,才恍然大悟,他们还不会将知识点联系起来,更难运用已经学过的知识去解释新的问题,缺乏知识的联想。再有一个就是不会画,不会正确画出合乎要求的几何图形,画图总是不能很规范,或者根本无从下手,动手能力比较差,比如:画三视图时,总是画的歪歪斜斜,或大或小,正方形化成长方形是常有的事,作一条线段等于已知线段时,总是不能按照步骤要求去完成,没有保留作图痕迹,没有结论,或长短不一,不知从何下手;还有就是不会想,在角度的计算上,总是看不到角之间的联系,就只是盯着一个角看,不去多想想,然后不习惯去标注角度方便计算,查找联系。最后,即使能够计算出角度,可是不知道该如何去正确清楚的书写,这是最大的问题。为今后几何的学习打好基础.鉴于以上问题,我们教师必须根据教材的低起点,及时加强能力的训练和培养。

初中几何数学小论文篇十五

1、使学生理解切割线定理及其推论;

2、使学生初步学会运用切割线定理及其推论、

3、通过对切割线定理及推论的证明,培养学生从几何图形归纳出几何性质的能力;

使学生理解切割线定理及其推论,它是以后学习中经常用到的重要定理、

学生不能准确叙述切割线定理及其推论,针对具体图形学生很容易得到数量关系,但把它用语言表达,学生感到困难、教学过程:

一、新课引入:

二、新课讲解:

最终教师指导学生把数量关系转成语言叙述,完成切割线定理及其推论、

2关系式:pt=pa·pb

数量关系式:pa·pb=pc·pb、

练习一,p、128中

练习二,p、128中

求证:ae=bf、

本题可直接运用切割线定理、

求o的半径、

解:设o的半径为r,po和它的长延长线交o于c、d、

(+r)=6×14r=(取正数解)答:o的半径为、

三、课堂小结:

为培养学生阅读教材的习惯,让学生看教材p、127—p、128、总结出本课主要内容:

2、通过对例3的分析,我们应该掌握这类问题的思想方法,掌握规律、运用规律、

四、布置作业:

1、教材p、132中10;2、p、132中11、

初中几何数学小论文篇十六

1、两全等三角形中对应边相等。

2、同一三角形中等角对等边。

3、等腰三角形顶角的平分线或底边的高平分底边。

4、平行四边形的对边或对角线被交点分成的两段相等。

5、直角三角形斜边的中点到三顶点距离相等。

6、线段垂直平分线上任意一点到线段两段距离相等。

7、角平分线上任一点到角的两边距离相等。

8、过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9、同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10、圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11、两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12、两圆的内(外)公切线的长相等。

13、等于同一线段的两条线段相等。

1、两全等三角形的对应角相等。

2、同一三角形中等边对等角。

3、等腰三角形中,底边上的中线(或高)平分顶角。

4、两条平行线的同位角、内错角或平行四边形的对角相等。

5、同角(或等角)的余角(或补角)相等。

6、同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7、圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8、相似三角形的对应角相等。

9、圆的内接四边形的外角等于内对角。

10、等于同一角的两个角相等

1、垂直于同一直线的各直线平行。

2、同位角相等,内错角相等或同旁内角互补的两直线平行。

3、平行四边形的对边平行。

4、三角形的中位线平行于第三边。

5、梯形的中位线平行于两底。

6、平行于同一直线的两直线平行。

7、一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

1、等腰三角形的顶角平分线或底边的中线垂直于底边。

2、三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3、在一个三角形中,若有两个角互余,则第三个角是直角。

4、邻补角的平分线互相垂直。

5、一条直线垂直于平行线中的一条,则必垂直于另一条。

6、两条直线相交成直角则两直线垂直。

7、利用到一线段两端的距离相等的点在线段的垂直平分线上。

8、利用勾股定理的逆定理。

9、利用菱形的对角线互相垂直。

10、在圆中平分弦(或弧)的直径垂直于弦。

11、利用半圆上的圆周角是直角。

1、作两条线段的和,证明与第三条线段相等。

2、在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3、延长短线段为其二倍,再证明它与较长的线段相等。

4、取长线段的中点,再证其一半等于短线段。

5、利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的'中线、三角形的重心、相似三角形的性质等)。

1、与证明线段的和、差、倍、分思路相同。

2、利用角平分线的定义。

3、三角形的一个外角等于和它不相邻的两个内角的和。

1、同一三角形中,大角对大边。

2、垂线段最短。

3、三角形两边之和大于第三边,两边之差小于第三边。

4、在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5、同圆或等圆中,弧大弦大,弦心距小。

6、全量大于它的任何一部分。

1、同一三角形中,大边对大角。

2、三角形的外角大于和它不相邻的任一内角。

3、在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4、同圆或等圆中,弧大则圆周角、圆心角大。

5、全量大于它的任何一部分。

1、利用相似三角形对应线段成比例。

2、利用内外角平分线定理。

3、平行线截线段成比例。

4、直角三角形中的比例中项定理即射影定理。

5、与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6、利用比利式或等积式化得。

1、对角互补的四边形的顶点共圆。

2、外角等于内对角的四边形内接于圆。

3、同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

4、同斜边的直角三角形的顶点共圆。

5、到顶点距离相等的各点共圆。

初中几何数学小论文篇十七

7、掌握向量的加减法、实数与向量相乘、向量的`线性运算。

8、锐角的正弦、余弦、正切、余切的概念,记住常见度数的三角比值。

9、解直角三角形及其应用。

10、圆心角、弦、弦心距的概念。

11、圆心角、弧、弦、弦心距之间的关系,运用定理进行初步的几何证明。

12、垂径定理及其推论。

13、直线与圆、圆与圆的位置关系及其相应的数量关系。

14、正多边形的有关概念和基本性质。

15、用基本作图工具,正确作出正三、四、六边形。

初中几何数学小论文篇十八

本考点含圆周、圆弧、扇形等概念,圆的周长和弧长的计算,圆的面积和扇形面积的计算三个部分,考核要求是:(1)理解圆周、圆弧、扇形等概念;(2)掌握圆的周长和弧长的计算;(3)掌握圆的面积和扇形面积计算,理解与掌握圆的周长和弧长、圆的面积和扇形面积公式是解决有关问题的关键,在解有关问题时,要注意:(1)正确的识别圆心、半径和圆心角:(2)进行有关计算时,中间过程可适当保留;(3)注意精确度的要求(尤其要注意精确度的要求,在).

考核要求:(1)能对线段中点、角的平分线进行文字语言、图形语言、符号语言的互译;(2)初步掌握和余角、补角有关的计算。注意:余角、补角的定义中,只和角的大小有关,和位置无关。

考点56:长方体的元素及棱、面之间的位置关系,画长方体的直观图。

长方体的元素及棱、面之间的位置关系是直线之间、直线和平面之间及平面和平面之间位置关系的缩影,基本要领比较多,掌握这一知识点的关键在于从概念出发,结合长方体的直观图来理解这些位置关系,画长方体的直观图主要掌握“斜二侧画法”,关键是理解12条棱之间的位置关系。

考点57:图形平移、旋转、翻折的有关概念。

图形平移、旋转、翻折是平面内图形运动的三种基本形式,主要性质是运动前后相比,只是图形的位置发生了变化,但图形的大小和形状并没有改变(即运动前后的两图形全等),决定图形平移的主要因素是移动的方向和移动的距离,平移前后的位置是解决平移问题的关键,图形旋转的主要因素是旋转中心和旋转角、旋转过程中的不动点即为旋转中心,任意一对对应点与旋转中心的连线所成的角为旋转角,翻折的主要因素是折痕,联结任意一对对应点所成的线段都被折痕垂直平分。

考点58:轴对称、中心对称的有关概念和的关性质。

轴对称是指两个图形中某一个沿一条直线翻折后与另一个图形重合;中心对称是其中一个图形绕旋转180度后能与另一个图形重合,联结对称点的连线都经过对称中心,并且被对称中心所平分,要确定两个成中心对称图形的对称中心,只要将其中的两个关键点与它们的对应点相连,连线的交点即为对称中心。

考点59:画已知图形关于某一直线对称的图形、已知图形关于某一点对称的图形。

考点60:平面直角坐标系的有关概念,直角坐标平面上的点与坐标之间的——对应关系。

直角坐标系把平面分成了六部分;第一、二、三、四象限和轴、轴。各部分的符号特征分别为:第一象限(+、+),第二象限(-、+),第三象限(-、-),第四象限(+、-);轴上的纵坐标为0,轴上的点横坐标为0,直角坐标平面上的点与坐标——对应,即:任意一个点的坐标唯一确定,同时任意一个坐标所对应的点也唯一确定,确定一个点的坐标往往需要确定点到、轴的距离和点所在的象限。注意:坐标(a、b)是一个有序实数对,即当时,(a,b)和(b,a)表示的点完全不同。

考点61:直角坐标平面上的点的平移、对称以及简单图形的对称问题。

考点62:相交直线的有关概念和性质。

考点63:画已知直线的垂线、尺规作线段的垂直平分线。

考点64:同位角、内错角、同旁内角的概念。

考点65:平行线的判定与性质。

考点66:三角形的有关概念、画三角形的高、中线、角平分线、三角形外角的性质。

考点67:三角形的任意两边之和大于第三边的性质、三角形的内角和。

考点68:全等形、全等三角形的概念。

考点69:全等三角形的判定与性质。

考点70:等腰三角形的性质与判定(含等边三角形)。

考点71:命题、定理、证明、逆命题、逆定理的有关概念。

考点72:直角三角形全等的判定。

考点73:直角三角形的性质、勾股定理及其逆定理。

考点74:直角坐标平面内两点间的距离公式。

考点75:角的平分线和线段的垂直平分线的有关性质。

考点76:轨迹的意义及三条基本轨迹(圆、角平分线、中垂线)。

考点77:多边形及其有关概念、多边形外角和定理。

考点78:多边形内角和定理。

考点79:平行四边形(包括矩形、菱形、正方形)的概念。

初中几何数学小论文篇十九

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行。

(2)平行四边形的对角相等,邻角互补。

(3)平行四边形的对角线互相平分。

3、判定:

(1)两组对边分别平行的四边形是平行四边形。

(2)两组对边分别相等的四边形是平行四边形。

(3)一组对边平行且相等的四边形是平行四边形。

(4)两组对角分别相等的四边形是平行四边形。

(5)对角线互相平分的四边形是平行四边形。

4、对称性:平行四边形是中心对称图形。

二、矩形的定义、性质及判定。

1、定义:有一个角是直角的平行四边形叫做矩形。

2、性质:矩形的`四个角都是直角,矩形的对角线相等。

3、判定:

(1)有一个角是直角的平行四边形叫做矩形。

(2)有三个角是直角的四边形是矩形。

(3)两条对角线相等的平行四边形是矩形。

4、对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定。

1、定义:有一组邻边相等的平行四边形叫做菱形。

(1)菱形的四条边都相等。

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角。

(3)菱形被两条对角线分成四个全等的直角三角形。

(4)菱形的面积等于两条对角线长的积的一半。

2、s菱=争6(n、6分别为对角线长)。

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形。

(2)四条边都相等的四边形是菱形。

(3)对角线互相垂直的平行四边形是菱形。

4、对称性:菱形是轴对称图形也是中心对称图形。

四、正方形定义、性质及判定。

1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、性质:

(1)正方形四个角都是直角,四条边都相等。

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形。

(4)正方形的对角线与边的夹角是45°。

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形。

3、判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等。

(2)先判定一个四边形是菱形,再判定出有一个角是直角。

4、对称性:正方形是轴对称图形也是中心对称图形。

五、梯形的定义、等腰梯形的性质及判定。

【本文地址:http://www.xuefen.com.cn/zuowen/9645281.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档