古诗词是中华优秀文化遗产的瑰宝,学习和鉴赏古诗词有助于丰富我们的内涵。怎样写出一篇完美的总结?我们需要结合具体案例和个人经历进行深入剖析和案例总结。小编精心挑选了一些总结范文,供大家参考,希望可以帮助到大家写作的过程。
鸽巢问题教学设计篇一
1.通过观察、比较、判断、归纳等方法,理解“抽屉原理”。
2.能够根据“抽屉原理”解决生活中的实际问题。
【学习过程】。
一、知识铺垫。
3个同学坐2张凳子。猜一猜结果怎样?
我发现:。
二、自主探究。
1.例:把4只铅笔放进3个文具盒中,有几种不同的方法?
枚举法:我们用括号里的`三个数字,分别代表三个文具盒中铅笔的枝数,则有(4,0,0),(),(),()等几种情况。
假设法:假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了??______枝铅笔,还剩下_____枝,放入任意一个文具盒,那么这个文具盒中就有______枝铅笔。
小组讨论:不管用哪种方法,文具盒中的铅笔枝数总有什么特点?
小结:把4枝铅笔放到3个盒子里,不管怎么放,总有一个盒子里至少有_____枝铅笔。
2.思考:把上述例题中的铅笔换成苹果,盒子换成抽屉,是否还有刚才的结论?
结论:
__________________________________________________________。
3.把5个苹果放入4个抽屉,总有一个抽屉里至少有_____个苹果?
把7个苹果放入6个抽屉,总有一个抽屉里至少有_____个苹果?
把100个苹果放入99个抽屉,结论:______________________________。
你有什么发现:
__________________________________________________。
当苹果个数比较多时,我们一般用什么方法思考?说一说枚举法和假设法的优缺点。
___________________________________________。
5.回顾反思。
通过以上学习你收获了什么?你还有哪些疑问或困惑可以先在小组内商讨,解决不了的可以告诉老师一起解决。
三、课堂达标。
1.6只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里,为什么?
2.一盒围棋棋子,黑白子混放,我们任意摸出3个棋子,结果怎样?(提示:把什么看作物体,什么看作抽屉?)。
3.足球队共有13名学生,一定至少有2名学生的生日在同一个月里,为什么?
鸽巢问题教学设计篇二
教学目标:
1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
教学重点:分配方法。
教学难点:分配方法。
教学方法:列举法分析法。
学习方法:尝试法自主探究法。
教学用具:课件。
教学过程:
一、定向导学(3分)。
(一)游戏引入。
1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
(二)揭示目标。
理解并掌握解决鸽巢问题的解答方法。
二、自主学习(8分)。
1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?
(1)理解“总有”和“至少”的意思。
(2)理解4种放法。
2、全班同学交流思维的过程和结果。
3、跟踪练习。
68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
(1)说出想法。
如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的`两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。
(2)尝试分析有几种情况。
(3)说一说你有什么体会。
三、合作交流(8)。
1、出示例2。
把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(1)合作交流有几种放法。
不难得出,总有一个抽屉至少放进3本。
(2)指名说一说思维过程。
如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
2、如果一共有8本书会怎样呢10本呢?
3、你能用算式表示以上过程吗?你有什么发现?
7÷3=2……1(至少放3本)。
8÷3=2……2(至少放4本)。
10÷3=3……1(至少放5本)。
4、做一做。
11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
四、质疑探究(5分)。
1、鸽巢问题怎样求?
小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
2、做一做。
69页做一做2题。
五、小结检测(10)。
(一)小结。
鸽巢问题的解答方法是什么?
物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。
(二)检测。
1、填空。
(1)7只鸽子飞进5个鸽舍,至少有()只鸽子要飞进同伴的鸽舍里。
(2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放()本书。
(3)四年级两个班共有73名学生,这两个班的学生至少有()人是同一月出生的。4、任意给出3个不同的自然数,其中一定有2个数的和是()数。
2、选择。
鸽巢问题教学设计篇三
1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点。
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点。
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:相关课件相关学具(若干笔和筒)。
教学过程。
一、游戏激趣,初步体验。
游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。
二、操作探究,发现规律。
1.具体操作,感知规律。
教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)师生交流摆放的结果。
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2.假设法,用“平均分”来演绎“鸽巢问题”。
1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考――同桌交流――汇报。
2汇报想法。
预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3学生操作演示分法,明确这种分法其实就是“平均分”。
三、探究归纳,形成规律。
1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]。
根据学生回答板书:5÷2=2……1。
(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1?
2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1。
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
四、运用规律解决生活中的问题。
课件出示习题.:
1.三个小朋友同行,其中必有几个小朋友性别相同。
2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
3.从电影院中任意找来13个观众,至少有两个人属相相同。
……。
[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]。
五、课堂总结。
这节课我们学习了什么有趣的规律?请学生畅谈,师总结。
鸽巢问题教学设计篇四
:教材第70页例3及练习十三相关题目。
1.在理解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。
2.经历把实际问题转化为鸽巢问题的过程,了解用“鸽巢原理”解题的一般步骤,恰当运用“鸽巢原理”解决问题。
3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重点:能运用“鸽巢原理”解决实际问题。
教学难点:能根据题意设计“鸽巢”。
教学准备:多媒体课件。
(二次备课)。
1.课件出示下列问题。
(1)把5只鸽子放进4个笼子里,总有一个笼子里至少放进()只鸽子。
(2)把7本书放进4个抽屉里,总有一个抽屉里至少放进()本书。
2.导入新课:上节课我们了解了“鸽巢原理”,这节课我们就用“鸽巢原理”解决问题。
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)。
学生提出猜想。
分组讨论:如何把这道题转化为“鸽巢问题”?
这道题其实就是把摸出的球(鸽子)放在两种颜色的“鸽巢”中,结论就是有一个颜色“鸽巢”中至少有2个。
根据“鸽巢原理”(一),只要摸出的球的个数比它们的颜色种数多1,就能保证一定有2个球是同色的,所以答案是至少要摸出3个球。
有两种颜色,只要摸出的球比它们的颜色至少多1,就能保证有两个球同色。
2.引导学生总结用“鸽巢原理”解决问题的一般步骤。
(1)确定什么是鸽巢及有几个鸽巢。
(2)确定分放的物体。
(3)用倒推的方法找到答案。
1.完成教材第70页“做一做”第2题。
2.完成教材练习十三第3、4题。
一副扑克牌(不包括大、小王)有4种花色,每种花色各有13张,现在从中任意抽牌。
(1)最少要抽(13)张牌,才能保证一定有4张牌是同一种花色的。
(2)最少要抽(14)张牌,才能保证一定有2张牌是不同种花色的。
(3)最少要抽(14)张牌,才能保证一定有2张牌是数字相同的。
今天我们通过学习进一步理解了“鸽巢原理”,并运用它解决实际问题。
教材练习十三第5、6题。
独立回答问题。
教师根据学生预习的情况,有侧重点地调整教学方案。
独立思考后,在小组内讨论怎样用“鸽巢原理”解决这些问题。
鸽巢问题教学设计篇五
本节课是数学广角内容,也叫“抽屉原理”。实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。反思如下:
1.从学生喜欢的“游戏”入手,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
2.引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。
在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,组织学生展开讨论交流。我引导学生借助平均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。最后,组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。注重让学生在观察、实验、猜想、验证等活动中,发展合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。
本节课首先通过三个基础练习回顾了“鸽巢原理”,接下来的练习题是鸽巢问题的原理比较简单,但是在实际的题目当中,最主要的.是帮助学生在不同的题目中找出该道题目的“鸽巢”是什么,然后要放到“鸽巢”里的东西是什么,只有帮助学生在解题时有了构建鸽巢问题模型的能力,才能使学生真正的理解鸽巢问题,以便更好地解决鸽巢问题。
鸽巢问题的出题方式都比较有趣,可以涉及生活的许多不同的方面。在解决这些问题时可以让学生都动手,构解题的模型,用实物去解决问题,教师要提高学生的这种能力,才能让学生真正地学会学习,产生学习数学动力,掌握学习数学的方法。
鸽巢问题教学设计篇六
一堂好的数学课,我认为应该是原生态,充满“数学味”的课。本节课我让学生经历了探究“鸽巢问题”的过程,初步了解了“鸽巢问题”,并能够应用与实际。
一、情境导入,初步感知。
兴趣是最好的老师,在导入新课时,我以4人的抢凳子游戏,初步感受至少有两位同学相同的现象,抓住学生注意力。
二、教学时以学生为主体,以学定教。
由于课前让学生做了预习,所以在课上我并没有“满堂灌”,而是先了解学生的已知和未知点,让预习程度好的'同学来试着解决其他同学提出的问题,再师生质疑,完成对新知的传授。这样既培养了学生预习的习惯,又能让学生找到知识的盲点,从而对本节课感兴趣,同时又锻炼了学生的语言表达能力。
三、通过练习,解释应用。
四、适当设计形式多样的练习,可以引起并保持学生的学习兴趣。如,扑克牌的游戏,学生们非常感兴趣,达到了预期的效果。
不足:
1、学生们语言表达能力还有待提高。
2、课堂中教师与速较快。
将本文的word文档下载到电脑,方便收藏和打印。
鸽巢问题教学设计篇七
教学内容:教科书第68页例1。
教学目标:
1、使学生理解“抽屉原理”(“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。
2、通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。
教学重点:
经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。
教学难点:
理解“抽屉原理”,并对一些简单的实际问题加以“模型化”。
教学模式:
学、探、练、展。
教学准备:
多媒体课件一套。
教学过程:。
一、游戏导入。
1.师生玩“扑克牌魔术”游戏。
(2)玩游戏,组织验证。
通过玩游戏验证,引导学生体会到:不管怎么抽,总有两张牌是同花色的。
2.导入新课。
刚才这个游戏当中,蕴含着一个数学问题,这节课我们就一起来研究这个有趣的问题。
二、呈现问题,探究新知。
课件出示自学提示:
(1)“总有”和“至少”是什么意思?
(2)把4支铅笔放进3个笔筒中,可以怎么放?有几种。
不同的放法?(请大家用摆一摆、画一画、写一写等方法把自己的想法表示出来。)。
(3)把4支铅笔放进3个笔筒中,不管怎么放总有一个笔筒至少放进xxx支铅笔?
(一)自主探究,初步感知。
1、学生小组合作探究。
2、反馈交流。
(1)枚举法。
(2)数的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(3)假设法。
师:除了像这样把所有可能的情况都列举出来,还有没有别的。
方法也可以证明这句话是正确的呢?
生:我是这样想的,先假设每个笔筒中放1支,这样还剩1支。这时无论放到哪个笔筒,那个笔筒中就有2支了。
师:你为什么要先在每个笔筒中放1支呢?
生:因为总共有4支,平均分,每个笔筒只能分到1支。
师:你为什么一开始就平均分呢?(板书:平均分)。
生:平均分就可以使每个笔筒里的笔尽可能少一点。
生:平均分已经使每个笔筒里的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
(4)确认结论。
师:到现在为止,我们可以得出什么结论?
生(齐):把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
(二)提升思维,构建模型。
师:(口述)那要是。
(1)把5支铅笔放进4个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。
(2)把6支铅笔放进5个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。
(3)10支铅笔放进9个笔筒中呢?100支铅笔放进99个笔筒中。
2.建立模型。
师:通过刚才的.分析,你有什么发现?
生:只要铅笔的数量比笔筒的数量多1,那么总有一个笔筒至少要放进2支笔。
师:对。铅笔放进笔筒我们会解释了,那么有关鸽子飞入鸽巢的问题,大家会解释吗?(课件出示)。
师:以上这些问题有什么相同之处呢?
生:其实都是一样的,鸽巢就相当于笔筒,鸽子就相当于铅笔。
师:像这样的数学问题,我们就叫做“鸽巢问题”或“抽屉问题”,它们里面蕴含的这种数学原理,我们就叫做“鸽巢问题”或“抽屉问题”。(揭题)。
三、基本练习。
四、拓展提升。
五、课堂小结。
六、作业布置。
完成课本第71页,练习十三,第1题。
鸽巢问题教学设计篇八
1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。
重点难点 经历抽屉原理的.探究过程,并对抽屉原理的问题模式化
学生笔记(教师点拨) 学 案 内 容
(1)自学例1
把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?
(1) 学生思考各种放法。
(2) 第一种放法: 第二种放法:
第三种放法: 第四种放法:
教学过程:
5÷2=2……1 (至少放3本)
7÷2=3……1 (至少放4本)
9÷2=4……1 (至少放5本)
1、提出问题。
不管怎么放,总有一个文具盒里至少放进( )铅笔。为什么?
如果每个文具盒只放( )铅笔,最多放( )枝,剩下()枝还要放进其中的一个文具盒,所以至少有()铅笔放进同一个文具盒。
(1) 说一说你有什么体会。
二自学例2
1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?
2、摆一摆,有几种放法。
不难得出,不管怎么放总有一个抽屉至少放进( )本书。
3、说一说你的思维过程。
如果每个抽屉放( )本书,共放了( )本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
如果一共有7本书会怎样呢?9本呢?
4. 你能用算式表示以上过程吗?你有什么发现?
总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
1. 做一做。
(1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
(2) 说出想法。
如果每个鸽舍只飞进( )鸽子,最多飞回( )鸽子,剩下()鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。
2. 做一做
8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
想:每个鸽舍飞进( )鸽子,共飞进( )鸽子。剩下( )鸽子还要飞进其中的1个或2个鸽舍,所以,至少有( )鸽子要飞进同一个鸽舍里。
鸽巢问题教学设计篇九
1、借助直观学具演示,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解鸽巢问题。
2、教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决鸽巢问题的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。
3、在活动中引导学生感受数学的魅力。本节课的“鸽巢问题”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。特别以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。
鸽巢问题教学设计篇十
教学目标:
1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学过程:
一、创设情境、导入新课。
1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)。
2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。
二、合作探究、发现规律。
师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)。
1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。(ppt)总有:一定有至少:最少。
师:这个结论正确吗?我们要动手来验证一下。
探究之前,老师有几个要求。(一生读要求)。
(3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)。
第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)。
第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)。
总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。
师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)。
(4)通过比较,引出“假设法”
引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(ppt演示)。
(5)初步建模—平均分。
师:先在每个笔筒里放1支,这种分法实际上是怎么分的?
生:平均分(师板书)。
师:为什么要去平均分呢?平均分有什么好处?
生:平均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不平均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)。
师:这种先平均分的方法叫做“假设法”。怎么用算式表示这种方法呢?
板书:4÷3=1……11+1=2。
师:现在我们把题目改一改,结果会怎样呢?
ppt出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?(引导学生说清楚理由)。
师:为什么大家都选择用假设法来分析?(假设法更直接、简单)。
通过这些问题,你有什么发现?
交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。
过渡语:师:如果多出来的数量不是1,结果会怎样呢?
2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?
(1)同桌讨论交流、指名汇报。
先让一生说出5÷3=1……21+2=3的结果,再问:有不同的意见吗?
再让一生说出5÷3=1……21+1=2。
师:你们同意哪种想法?
(2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次平均分?
(3)明确:再次平均分,才能保证“至少”的情况。
3、教学例2。
(1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。
(2)独立思考后指名汇报。
师板书:7÷3=2……12+1=3。
(3)如果有8本书会怎样?10本书呢?
指名回答,师相机板书:8÷3=2……22+1=3。
师:剩下的2本怎么放才更符合“至少”的要求?
为什么不能用商+2?
10÷3=3……13+1=4。
(4)观察发现、总结规律。
归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书:商+1)。
三、巩固应用。
师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。
1、做一做第1、2题。
2、用抽屉原理解释“扑克表演”。
说清楚把4种花色看作抽屉,5张牌看作要放进的书。
四、全课小结:
通过这节课的学习,你有什么收获或感想?
鸽巢问题教学设计篇十一
审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。
设计理念。
《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析。
《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。
第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的除法算式表示思维的过程。
学情分析。
可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。
教学目标。
1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点。
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点。
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:相关课件相关学具(若干笔和筒)。
教学过程。
一、游戏激趣,初步体验。
游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。
二、操作探究,发现规律。
1、具体操作,感知规律。
教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)师生交流摆放的结果。
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。
设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。”这句话的理解。所以通过具体的操作,枚举所有的情况后,引导学生直接关注到每种分法中数量最多的筒,理解“总有一个筒里至少放进了2支笔”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2、假设法,用“平均分”来演绎“鸽巢问题”。
1、思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考——同桌交流——汇报。
2、汇报想法。
预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的.1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3、学生操作演示分法,明确这种分法其实就是“平均分”。
三、探究归纳,形成规律。
1、课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。
根据学生回答板书:5÷2=2……1。
(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1。
2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1。
设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2支”得到“至少商+余数”个,再到得到“商+1”的结论。
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
四、运用规律解决生活中的问题。
课件出示习题.:
1.三个小朋友同行,其中必有几个小朋友性别相同。
2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
3.从电影院中任意找来13个观众,至少有两个人属相相同。
……。
设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。
五、课堂总结。
这节课我们学习了什么有趣的规律?请学生畅谈,师总结。
鸽巢问题教学设计篇十二
教学目标:
1、理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。
2、体会数学知识在日常生活中的广泛应用,培养学生的探究意识。
教学重点:了解简单的鸽巢问题,理解“总有”和“至少”的含义。
教学难点:运用“鸽巢原理”解决相关的实际问题,理解数学中的优化思想。
教学过程:
一、游戏激趣导入新课。
1、同学们看,老师手中拿的是什么?拿出大王和小王,剩下的牌中共有几种花色?
2、现在我们一起来玩猜花色的游戏,请5位同学到前面每人随意抽一张纸牌,抽完后不要让老师看到。
3、抽后老师大胆猜测:一副扑克牌,取出大王和小王,5人每人随意抽一张,至少有2张牌花色相同(课件出示)。
4、有些同学一定觉得老师只是凑巧猜对了,我们再抽一次,老师还大胆猜测:一副扑克牌,取出大王和小王,5人每人随意抽一张,至少有2张牌花色相同。如果老师猜对了,就给老师点掌声。
5、如果老师再换5名同学来抽牌,我还敢确定的说至少有2张牌的花色相同,这是为什么呢?其实这里面蕴藏着一个有趣的数学原理--抽屉原理,也叫鸽巢原理或鸽巢问题,这节课我们就一起来研究这个问题。(板书课题)。
(设计意图:通过这个游戏激发学生学习本节课的好奇心,也使学生感受到数学和生活中的联系,知道学习本节课的重要性。)。
二、呈现问题自主探究。
1、小红在整理自己的学习用品是有这样的发现(课件出示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。)学生齐读。
2、在这句话中你有什么不理解的吗?学生提出不理解的词语。
(1)不管:随意,想想怎么放就怎么放。
(2)总有:一定有。
(3)至少:最少,最起码。
师提问:最少2支指的是几支呢?具体来说。
2、把整句话翻译过来再说一遍。
(设计意图:让学生充分理解这句话的意思,为接下来的研究做好铺垫。)。
2、你觉得这句话说得对吗?给同学们1分钟时间同学生静静思考一下。
3、现在同学用摆一摆、画一画、写一写等方法来验证这句话,老师出示自己的温馨提示。(课件出示:温馨提示:选择自己喜欢的方式验证,比如,同桌合作,用纸杯代替笔筒,用铅笔摆一摆,一人摆,一人记录。(注意:不考虑顺序。)。
4、学生汇报验证的方法:
生1:利用图片来列举出几种放法。
教师小结:非常好,我们在观察这几种摆法,把符合要求的笔筒用彩色笔标出来:所以说不管怎么放总有一支笔筒里至少有2支铅笔。
生2:利用数字方法列举出几种方法(4,0,0)(3,1,0)(2,1,1)(2,2,0)。
我们一起圈出每种分法不少于2的数字。(表扬生2,方法更简单一些)。
5、同学们像刚才把所有中情况都列举出来,这种方法就叫做列举法或枚举法。(板书)。
6、除了这种枚举法,还有没有别的方法也能证明这句话是对的。
生:先假设每个笔筒中放1支铅笔,这样还剩1支铅笔,这时无论放到哪个笔筒,哪个笔筒就是2支铅笔了,所以我认为是对的。
师追问:你为什么要现在每个笔筒里放1支呢?
生:因为一共有4支笔,平均分后每个笔筒只能分到一支。
师追问:那为什么要一开始就去平均分呢?
生:平均分就可以使每个笔筒中的笔尽量少一点,如果这样都能符合要求,其他中情况都能符合要求了。
(设计意图:教师的追问让学生更明确为什么要平均分,平均分的好处是什么。)。
7、这位同学的想法真是太与众不同了,我们为他鼓掌,谁听懂了他的想法,把他的想法在复述一遍。
8、想这位同学的方法就是假设法。(板书:假设法)。
9、到现在为止,我们可以得出结论了。
三、提升思维构建模型。
1、刚才我们通过不同的方法验证了这句话是正确的,现在老师把题目改一改,同学们看看还对不对了,为什么?(课件出示:把5支铅笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。)生回答并说明理由。
2、课件继续出示:
(1)把6个苹果放进5个盘子里呢?
(2)把10本书放进9个抽屉中呢?
(3)把100只鸽子放进99个笼子中呢?
3、我们为什么都采用了假设法来分析,而不是画图用枚举法呢?(枚举法虽然直观,但是有一定的局限性,假设法更具有一般性)。
(设计意图:通过出示更大的数,让学生感受到用假设法的方便性,实用性,同时引出的优化的思想。)。
4、在数学课堂上我们通常采用更便于我们解决的方法来解决问题,这是一种优化的思想。(板书:优化思想)。
5、引出物体数、鸽巢数、至少数,学生观察,你有什么发现吗?(当物体数比鸽巢数多1时,总有一个鸽巢里至少有2个物体。)。
6、回过头来我们看课前老师猜测的扑克牌的游戏,谁能解释一下是怎么回事呢?看来并不是老师神奇,而是鸽巢问题神奇啊。
7、同学们今天的发现是德国数学家狄利克雷最早提出的:课件介绍有关鸽巢问题的来历。
四、解决问题练习巩固。
通过学生的努力,我们一起研究出鸽巢问原理,现在老师出几道题看同学们是否真的学会了。
1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?
(设计意图:习题2锻炼学生的逆向思维,同时也为下节课的学习埋下了伏笔。)。
五、课堂总结。
板书设计:
鸽巢问题教学设计篇十三
1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点。
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:相关课件相关学具(若干笔和筒)。
教学过程。
一、游戏激趣,初步体验。
游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。
二、操作探究,发现规律。
1.具体操作,感知规律。
教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)师生交流摆放的结果。
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2.假设法,用“平均分”来演绎“鸽巢问题”。
1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考――同桌交流――汇报。
2汇报想法。
预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3学生操作演示分法,明确这种分法其实就是“平均分”。
三、探究归纳,形成规律。
1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]。
根据学生回答板书:5÷2=2……1。
(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1?
2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1。
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
四、运用规律解决生活中的问题。
课件出示习题.:
1.三个小朋友同行,其中必有几个小朋友性别相同。
2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
3.从电影院中任意找来13个观众,至少有两个人属相相同。
……。
[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]。
五、课堂总结。
这节课我们学习了什么有趣的规律?请学生畅谈,师总结。
鸽巢问题教学设计篇十四
教科书第68页例1。
(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。
教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。
多媒体课件。
(一)候课阅读分享:
同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。
(二)激情导课。
好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。
(三)民主导学。
1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。
请你再把题读一次,这是为什么呢?
对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。
课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!
方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。
刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。
那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?
方法二:用“假设法”证明。
对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)。
方法三:列式计算。
你能用算式表示这个方法吗?
学生列出式子并说一说算式中商与余数各表示什么意思?
2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。
这道题大家可以用几种方法解答呢?
3种,枚举法、假设法、列式计算。
3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?
还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。
4、表格中通过整理,总结规律。
你发现了什么规律?
当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。
经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。
(四)检测导结。
好,我们做几道题检测一下你们的学习效果。
1、随意找13位老师,他们中至少有2个人的属相相同。为什么?
3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?
(五)全课总结今天你有什么收获呢?
(六)布置作业。
作业:两导两练第70页、71页实践应用1、4题。
鸽巢问题教学设计篇十五
数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“鸽巢问题”的探究过程,从探究具体问题到类推得出一般结论,初步了解“鸽巢问题”。本节课教学在师生互动方面有以下特色:
在导入新课时,我以游戏引入,不仅激发学生的兴趣,提高师生双边互动的积极性,更是让学生初步感受到鸽巢原理的本质。通过游戏,一下子就抓住了学生的注意力。让学生觉得这节课要探究的问题,好玩又有意义,唤起学生继续参与课堂互动的意愿。
本节课充分发挥学生的自主性,首先让学生自主思考,采用自己的方法“证明”:“把4枝铅笔放入3个杯子中,不管怎么放,总有一个杯子里至少放进2枝铅笔”。接着同桌互动演示并尝试解释这种现象发生的原因。最后,全班交流展示,多元评价各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。
本节课注重给学生创造提出问题的机会,让学生去品尝提出问题、解决问题的快乐。如在出示“5只鸽子飞进了3个鸽笼”问学生看到这个条件你想提怎样的数学问题?这样间接培养学生的问题意识。
鸽巢问题教学设计篇十六
本节课是通过几个直观例子,借助实际操作,引导学生探究“鸽巢原理”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。
1、借助直观操作,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解抽屉原理。
2、教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决抽屉原理的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。
3、在活动中引导学生感受数学的魅力。本节课的“抽屉原理”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。特别以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。
回顾整节课我觉得主要存在两个问题:
1、在学生体验数学知识的产生过程中,我始终担心学生不理解,不敢大胆放手,总是牵着学生的思路走。
2、这部分内容属于思维训练的内容,应该让学生多说理,让学生在说理的过程中真正理解体会“鸽巢问题”中的“总有”和“至少”的真正含义,并能灵活运用所学知识解答一些变式练习。
鸽巢问题教学设计篇十七
本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的`结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:
(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。
(2)理解知识的产生过程,受到历史唯物注意的教育。
(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。
重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。
难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。
1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的`方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。
3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。
鸽巢问题教学设计篇十八
1.1知识与技能:
1.初步了解“抽屉原理”,会运用“抽屉原理”解决简单的实际问题或解释相关的现象。2.通过操作、观察、比较、推理等数学活动,引导学生理解并掌握这一类“抽屉原理”的一般规律。
1.2过程与方法:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”,体会比较的学习方法。
1.3情感态度与价值观:
感受数学的魅力,提高学习数学的兴趣和应用意识,培养学习数学的兴趣。
2.教学重点/难点。
2.1教学重点。
经历抽屉原理的探究过程,理解抽屉原理,灵活运用抽屉原理解决生活中的简单问题。
2.2教学难点。
理解“总有”、“至少”,构建“抽屉原理”的数学模型,并对一些简单的实际问题加以模型化。
3.教学用具。
多媒体课件,铅笔,笔筒,一副扑克牌。
4.标签。
教学过程。
一、开门见山,引入课题。
学生提出问题:什么是抽屉原理?怎样研究抽屉原理?抽屉原理有什么用?等等。师:同学们都很爱提问题,也很会提问题,这节课我们就带着这些问题来研究。
二、自主探究,构建模型。
1.教学例1,初步感知,体验方法,概括规律。
师:我们先从简单的例子入手,请看,如果把4个小球放进3个抽屉里,我可以肯定地说,不管怎么放,总有一个抽屉里至少放2个小球。
稍加停顿。
师:“总有”是什么意思?
生:一定有。
师:“至少放2个小球”你是怎样理解的?
生:最少放2个小球,也可以放3个、4个。
师:2个或比2个多,我们就说“至少放2个小球”。
师:老师说的这句话对吗?我们得需要验证,怎么验证呢?华罗庚说过不懂就画图,下面请同学们用圆形代替小球,用长方形代替抽屉,画一画,看有几种不同的方法。也可以寻求其他的方法验证,听明白了吗?开始吧!
学生活动,教师巡视指导。
汇报交流。
师:哪位同学愿意把你的方法分享给大家?
一生上前汇报。
生1:可以在第一个抽屉里放4个小球,其他两个抽屉空着。
师:这4个小球一定要放在第一个抽屉里吗?
生:不一定,也可以放在其他两个抽屉里。
师:看来不管怎么放,总有一个抽屉里放进4个小球。这种放法可以简单的记作4,0,0。不好意思,接着介绍吧。
生:第二种方法是第一个抽屉里放3个小球,第二个抽屉里放1个,第三个抽屉空着,也就是3,1,0;第三种方法是2,2,0;第四种方法是2,1,1。
(此环节可以先让一名学生汇报,其他学生补充、评价)。
师:他找到了4种不同的方法,谁来评一评?
生2:他找的很全,并且排列的有序。
师:除了这4种放法,还有没有不同的放法?(没有)谢谢你的精彩展示,请回。看来,把4个小球放进3个抽屉里,就有这4种不同的方法。同学们真不简单,一下子就找到了4种放法。
出示课件,展示4种方法。
生:第一种放法有一个抽屉里放4个,大于2,符合至少2个,第二种放法有一个抽屉里放3个,也大于2,符合至少2个,第三种放法有一个抽屉里放2个,符合至少2个,第四种放法有一个抽屉里放2个,符合至少2个。所以,总有一个抽屉里至少放两个小球。
师:说得有理有据。谁愿意再解释解释?(再找一名学生解释)。
师:原来呀!这两位同学关注的都是每种方法当中放的最——多的抽屉,分别放了几个小球?(4个、3个、2个、2个)最少放了几个?(2个),最少2个,有的超过了2个,我们就说至少2个。确实,不管怎么放,我们都找到了这样的一个抽屉,里面至少放2个小球。看来,老师的猜测对不对?(对)是正确的!
生1:把小球分散地放,每个抽屉里先放1个小球?剩下的1个小球任意放在其中的一个抽屉里,这样总有一个抽屉里至少放了两个小球。
生2:先把小球平均放,余下的1个小球不管放在哪个抽屉里,一定会出现总有一个抽屉里至少放了2个小球。
师:每个抽屉里先放1个小球,也就是我们以前学过的怎么分?
生:平均分。
师:为什么要先平均分?
生:先平均分,就能使每个抽屉里的小球放得均匀,都比较少,再把余下的1个小球任意放在其中的一个抽屉中,这样一定会出现“总有一个抽屉至少放了2个小球”。
课件演示。
3=1……1,1+1=2。生:4÷。
3=1……1,1+1=2教师随机板书:4÷。
师:这两个“1”表示的意思一样吗?
生:不一样,第一个“1”表示每个抽屉里分得的1个小球,第二个“1”表示剩下的那个小球,可以放在任意一个抽屉里。
师:第一个“1”就是先分得的1个小球,也就是除法中的商,第二个“1”是剩下的1个小球,可以任意放在其中的一个抽屉中。瞧,用算式来表示多么地简洁明了。
生:第四种放法出现的情况。
师:你认为用列举法和假设法进行验证,哪种方法比较简便?为什么?
生:假设法,列举法需要把所有的情况都一一列举出来,假设法只需要研究一种情况,并且可以用算式简明地表示出来。
生:2个,先往每个抽屉里放一个小球,这样还剩下1个,剩下的1个小球任意放在一个其中的一个抽屉里,这样,不管怎么放,总有一个抽屉里至少放2个小球。
师:把6个小球放进5个抽屉里,总有一个抽屉里至少放几个小球呢?
5=1……1,1+1=2,还是总有一个抽屉里至少放2个小球。生:6÷。
师:把7个小球放进6个抽屉里呢?
生:总有一个抽屉里至少放2个小球。
师:接着往后想,你能继续说吗?
生1:小球个数和抽屉个数都依次增加1,总有一个抽屉里至少放的小球个数都是2.生2:当小球的个数比抽屉数多1时,不管怎么放,总有一个抽屉里至少放2个小球。师:你们真善于概括总结!
2.教学例2,深入研究,提升思维,构建模型。
师:刚才我们研究了小球数比抽屉数多1时,总有一个抽屉至少放2个小球,当小球数比抽屉数多2、多3,甚至更多,又会出现什么情况呢?想不想继续研究?(想)。
5=1……2,1+2=3。生1:7÷。
师:有不同意见吗?
5=1……2,1+1=2。生2:7÷。
5=1……2,不同点是一位同学认师:出现了两种不同的声音,这两位同学都是用7÷。
生3:我赞同1+1=2。因为余下的2个还要分到不同的抽屉里,所以总有一个抽屉至少放2个小球。
鸽巢问题教学设计篇十九
教科书第68页例1。
(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。
教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。
多媒体课件。
同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。
好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。
1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。
请你再把题读一次,这是为什么呢?
对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。
课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!
方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。
刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。
那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?
方法二:用“假设法”证明。
对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)。
方法三:列式计算。
你能用算式表示这个方法吗?
学生列出式子并说一说算式中商与余数各表示什么意思?
2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。
这道题大家可以用几种方法解答呢?
3种,枚举法、假设法、列式计算。
3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?
还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。
4、表格中通过整理,总结规律。
你发现了什么规律?
当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。
经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。
好,我们做几道题检测一下你们的学习效果。
1、随意找13位老师,他们中至少有2个人的属相相同。为什么?
3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?
今天你有什么收获呢?
作业:两导两练第70页、71页实践应用1、4题。
鸽巢问题教学设计篇二十
审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。
《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。
第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的'除法算式表示思维的过程。
可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。
1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:相关课件相关学具(若干笔和筒)。
游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。
1.具体操作,感知规律。
教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)师生交流摆放的结果。
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2.假设法,用“平均分”来演绎“鸽巢问题”。
1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考——同桌交流——汇报。
2汇报想法。
预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3学生操作演示分法,明确这种分法其实就是“平均分”。
1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]。
根据学生回答板书:5÷2=2……1。
(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1?
2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1。
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
课件出示习题:
1.三个小朋友同行,其中必有几个小朋友性别相同。
2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
3.从电影院中任意找来13个观众,至少有两个人属相相同。
……。
[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]。
这节课我们学习了什么有趣的规律?请学生畅谈,师总结。
鸽巢问题教学设计篇二十一
《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。
第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的除法算式表示思维的过程。
可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。
1、通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3、通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。
1、具体操作,感知规律。
教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)师生交流摆放的结果。
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2、假设法,用“平均分”来演绎“鸽巢问题”。
1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考——同桌交流——汇报。
2汇报想法。
预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3学生操作演示分法,明确这种分法其实就是“平均分”。
1、课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]。
根据学生回答板书:5÷2=2……1。
(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1?
2、师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1。
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
课件出示习题.:
1、三个小朋友同行,其中必有几个小朋友性别相同。
2、五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
3、从电影院中任意找来13个观众,至少有两个人属相相同。
[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]。
这节课我们学习了什么有趣的规律?请学生畅谈,师总结。
鸽巢问题教学设计篇二十二
“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识,“鸽巢”问题教学反思。例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。
兴趣是学习最好的老师。所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。借机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数学活动中主动参与。
鸽巢问题教学设计篇二十三
1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
经历鸽巢原理的探究过程,初步了解鸽巢原理。
理解鸽巢原理,并对一些简单的实际问题加以模型化。
1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)。
2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。
师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)。
1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。(ppt)总有:一定有至少:最少。
师:这个结论正确吗?我们要动手来验证一下。
探究之前,老师有几个要求。(一生读要求)。
(3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)。
第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)。
第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)。
总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。
师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)。
(4)通过比较,引出“假设法”
引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(ppt演示)。
(5)初步建模—平均分。
师:先在每个笔筒里放1支,这种分法实际上是怎么分的?
生:平均分(师板书)。
师:为什么要去平均分呢?平均分有什么好处?
生:平均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不平均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)。
师:这种先平均分的方法叫做“假设法”。怎么用算式表示这种方法呢?
板书:4÷3=1……11+1=2。
师:现在我们把题目改一改,结果会怎样呢?
ppt出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?(引导学生说清楚理由)。
师:为什么大家都选择用假设法来分析?(假设法更直接、简单)。
通过这些问题,你有什么发现?
交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。
过渡语:师:如果多出来的数量不是1,结果会怎样呢?
2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?
(1)同桌讨论交流、指名汇报。
先让一生说出5÷3=1……21+2=3的结果,再问:有不同的意见吗?
再让一生说出5÷3=1……21+1=2。
师:你们同意哪种想法?
(2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次平均分?
(3)明确:再次平均分,才能保证“至少”的情况。
(1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。
(2)独立思考后指名汇报。
师板书:7÷3=2……12+1=3。
(3)如果有8本书会怎样?10本书呢?
指名回答,师相机板书:8÷3=2……22+1=3。
师:剩下的2本怎么放才更符合“至少”的要求?
为什么不能用商+2?
10÷3=3……13+1=4。
(4)观察发现、总结规律。
归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书:商+1)。
师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。
1、做一做第1、2题。
2、用抽屉原理解释“扑克表演”。
说清楚把4种花色看作抽屉,5张牌看作要放进的书。
通过这节课的学习,你有什么收获或感想?
【本文地址:http://www.xuefen.com.cn/zuowen/17986255.html】