最新《圆柱与圆锥》教学反思总结 圆柱与圆锥教学设计带反思3篇(模板)

格式:DOC 上传日期:2023-04-02 16:07:20
最新《圆柱与圆锥》教学反思总结 圆柱与圆锥教学设计带反思3篇(模板)
时间:2023-04-02 16:07:20     小编:admin

总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。写总结的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。

《圆柱与圆锥》教学反思总结 圆柱与圆锥教学设计带反思篇一

认识圆柱时,由于学生对圆柱已有了一些直观的认识,教学中我先让学生从情境图中找出圆柱,再让学生举例说说生活中还有哪些物体的形状是圆柱的。然后引导学生通过观察、比较与交流,进一步探索圆柱的特征。在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高的含义。这一过程,学生是在教师的引导下进行学习的,对圆柱的特征有了较完整的认识。

圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾:“圆柱有哪些特征?各部分的名称是什么?”通过交流学生明白了对于圆柱是从面、直观图等方面进行研究的。我及时设问:“我们能从哪些方面来研究圆锥?”通过交流,学生对学习的方法进行了有效地迁移,学习的积极性得到有效地激发。对于圆锥,不同的同学有了不同的认识。然后,通过适时地交流和组织阅读课本,学生对于圆锥有了较好的认识。在认识了圆柱和圆锥的特征以后,我让学生对它们的特征进行了有效的对比。从而使学生对于圆柱和圆锥有了更深的认识,完善了学生的知识系统。

在探索圆柱的体积公式时,先让学生观察底面积和高分别相等的长方体、正方体和圆柱,猜想它们体积间的关系,再启发学生把以前探索圆面积公式的经验和方法迁移到探索圆柱的体积公式中来,进而推导出圆柱体积公式,验证猜想。

在教学圆柱的表面积的计算方法时,我先布置学生完成学具中等底等高的圆柱和圆锥的模型的`制作,让学生对圆柱的表面积有个潜在的认识,并为教学体积公式奠定实物基础。教材先让学生围绕求圆柱形罐头侧面商标纸的面积是多少这一问题进行探索。在此基础上,我找来几个圆柱形并具有侧面商标纸的罐子,用剪刀剪开商标纸进行实物演示,再引导学生在方格纸上画出圆柱展开图,探索圆柱表面积的计算方法。学习圆锥的体积公式,重点是理解圆锥体积等于等底等高的圆柱体积的中的1/3“1/3”,学生没有动手操作,就没有亲身经历的体验,对1/3也就没有强烈的感受,所以我利用原有学生制作的模型,让学生在沙池中装、倒细沙,学生自己动手操作,亲身体验,推导出圆锥的体积公式,从而提升学生的数学思维水平,培养学生的学习能力。

通过本单元的教学,我认识到在我们的教学中要注意教材编排的特点,有层次地发挥教师的主导作用。教学中的“度”确实应该引起我们的重视。

《圆柱与圆锥》教学反思总结 圆柱与圆锥教学设计带反思篇二

综合复习了圆柱和圆锥部分的知识以后,练习题也做了不少,可我发现许多同学仍然在某些题上频繁出错,或隔一段时间再做就会出错,我仔细分析了一下,发现他们还是没有真正理解题意,怎么办呢?经过思索,我终于发现,问题的根源在于我,在于我的引导方法不对,如:

一台压路机的前轮是圆柱形,轮宽1.5米,直径1.2米:

(1)前轮转动一周,前进了多少米?

(2)如果每分钟滚动15周,压过的路面是多少平方米?

对于这样一道题,我总觉得学生理解起来应该不难,因此每次只是抽学生回答一下:

第一小题其实是求什么?(底面圆的周长)第二小题求的是什么?(圆柱的侧面积)。并没有多想学生理解不理解。而每每做这道题时效果都十分不理想。后来,在一次教研交流中听了于老师说的一句话,我茅塞顿开,我的引导还是过于含糊了,因此,在下节课中,在讲评这道题中,我也随手拿起学生的一本数学书,请孩子们也跟我来,一起演示压路机的前轮滚动的情况,边演示边指:前进了多少米是求的哪一部分的长,而压路的面积是求哪一部分的面积,这样形象直观,学生很容易接受,同时我告诉学生,以后遇到你不理解的情况,也要积极想办法,如画图、利和手中的书本等帮助自己化抽象为形象,从而化难为易,而不能不加思考去拼凑算式。

再如,课本59页第12题:欣欣把一块底面半径2厘米,高6厘米的圆柱形橡皮泥,捏成一个与圆柱底面相等的圆锥形,你知道它的高吗?

大部分学生会通过计算,即先求圆柱形的体积,再利用体积相等的关系,用体积乘3,再除以底面积来做,但,当我把底面半径2厘米去掉以后,学生很难分清到底乘3还是除以3,为此,我很是头疼。

怎么办?背公式吗?学生记不住,也限制了思维的发展。后来,我发现一个孩子在本上画图,我受到了启发:是啊,当它们体积相等时,学生可以在本上画图,凭直觉就能发现,当底面积也相等时,圆锥的高肯定是圆柱的3倍,而高相等时,圆锥的底面积应为圆柱的3倍。接着,我又在黑板上画了个相反的情况:试想,当它们体积相等时,如果底面积也相等,而圆锥的高如果说画成圆柱的1/3,会是什么样子呢?我画上以后,学生哈哈大笑,也轻松掌握了这一方法,以后,在这类题上就很少出错了。

通过以上方法,我也深深体会到,数学教学不能光“说”不“做”,要不,学生记住的,也是一些死答案。

《圆柱与圆锥》教学反思总结 圆柱与圆锥教学设计带反思篇三

在学习完第三单元《圆柱与圆锥》之后,很多学生容易把圆柱的表面积和体积的计算方法混淆、计算圆锥的体积时老忘乘三分之一、计算生活实际中的物体表面积和体积时,又不能正确判断该计算什么或者如何计算,一系列的问题困扰着全体师生,这些问题也反映出学生对基础知识的掌握不牢固、计算能力差、对计算公式运用不熟练等。针对这种情况我设计了一节《圆柱和圆锥的整理与复习》课,本节课共设计了两个环节:

第一环节:整理本单元学过的知识点。包括两部分:

1、同桌互说圆柱和圆锥的特征和相关的计算公式;

2、全班交流圆柱和圆锥的异同点,整理各种计算公式。

第二环节:课堂练习。本环节共设计了10道练习题,都是利用公式进行计算的题目,目的是强化学生运用公式解决实际问题的能力。

虽然课前做了充分的准备,但上完这节课,才发现课堂效果并不理想。静下心来反思,似乎自己有点高估了学生的能力,对学情的把握也不够好。本计划用7—8分钟的时间完成第一环节,然后就进入第二环节的学习。上课时才发现学生对圆柱和圆锥的特征的掌握还基本可以,对于计算公式只会死记硬背,很多学生并不理解字母公式表达的意思,因此在汇报交流环节用了较长的时间给学生讲各个字母公式的意思,帮助学生记忆最基础的计算公式。比如,有的同学还没记住圆的面积公式,更不要说新公式了,完全是一塌糊涂。

1、平时注意对基础知识的强化训练,没有简单的基础知识的支撑,学生就很难在脑海里构建系统的知识网络,就不能灵活运用知识工具解决问题。

2、在上复习课时,可以将知识点的复习贯穿在习题的训练中,在习题训练中再次提炼知识点和解题方法,这样可以将知识点和解决问题紧密结合,不会出现知识点和解决问题脱节的情况。

3、复习时不要贪多,一节课只针对一个知识点进行复习,习题设计要由易到难,层层递进,训练学生举一反三的能力。

【本文地址:http://www.xuefen.com.cn/zuowen/2154302.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档