最新分数与除法 说课 分数除以分数说课十四篇(实用)

格式:DOC 上传日期:2023-04-09 12:56:52
最新分数与除法 说课 分数除以分数说课十四篇(实用)
时间:2023-04-09 12:56:52     小编:zdfb

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

分数与除法 说课 分数除以分数说课篇一

这部分内容,是在学生们学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。这类应用题历来是学生们学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生们分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生们通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生们思维的广度。

根据教材特点和学生实际我确定本节课的教学目标是:

(1)会分析较复杂的分数除法应用题数量关系。

(2)能列方程正确解答稍复杂的分数除法应用题。

(3)培养学生初步的逻辑思维能力。

教学重点是:能用方程正确解答稍复杂分数除法应用题。

教学难点是:确定单位“1”、分析数量关系。

1.自主探究、寻求方法

让学生充分自主探究、寻求分数除法的解题方法。

2.设计教法体现主体

课堂设计以学生为主体,注重学生间的合作与交流各抒已见、取长补短、共同提高。

1.复习铺垫(分两个内容)

现价是原价的4/5;男生比女生多1/3;今年比去年少2/5;火车速度比汽车快2/9

让学生来说说等量关系,找一找单位“1”

合唱队有女生30人,男生比女生多1/3,女生有多少人?

意图:解决问题中关键是找出题目中关键句的等量关系,因此安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的分析能较为自然了。

2.教学新知

改例题为男生比女生多1/3,女生有多少人?

(补充)男生比女生少1/3,女生有多少人?

比较的目的:为了让学生明白这里的等量关系不变,变的是其中的已知与未知的量,因此我们仍然可以顺着刚才的思路,把未知的量设为x,应该说学生是不会有困难的。

例题与补充题的比较是考虑到,比单位“1”多(少)几分之几的区别,数量关系不一样了,其中未知与已知的量是相同的。也可以用方程的方法来解决。

分数与除法 说课 分数除以分数说课篇二

“分数与除法的关系”这一教学内容,是小学教学第八册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。

本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。

分数与除法的关系这一小节的目标有以下几点:

1.知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。

2.能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

3.情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。

在教学本课内容之前,学生已掌握了,分数的意义,知道了分数的产生等知识,具有动手操作的学习技能和小组合作探究的学习能力。通过对本节课内容的学习,要使学生具有领悟到分数与除法的关系,而且要感受到用分数来表示结果时量与率的不同之处。

本课材的内容是由以下几部分组成的:

第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。

第二部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。

第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。

本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学。教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程,这也是我的教学特色。

在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。

针对以上的学生情况和教学设想,我设计了这样的课程。

这一部分的目的是在已有的知识上学习新知识,让学生感知知识产生和发展的过程,为重点的落实,难点的突破铺路搭桥。

(1)出示一条长1米的绳子,动手折一下,平均分成3段,亲身感受13米的具体长度。

(2)问一问他们怎样计算这一份的长度?

(3)当他们发现不能得到整数的商时,引导他们讨论应该怎样表示他的结果。

从而板书课题——分数与除法的关系。

(4)介绍分数表示除法的商的由来。

这一部分的目的是在学生已初步建立了分数与除法的关系时,将数学活动变成师生之间,生生之间交往互动与共同发展的过程,遵循学生认知的特点,进一步发展思维能力,创造有现实性,挑战性和趣味性的数学活动。

(1)出示例3:把3块饼平均分给4个孩子,每人平均分得多少块?

——首先请他们估算一下每个人应分得多少块?

参考答案:

a.半块b.半块多c.一块

——其次,拿出准备好的圆纸片,小组合作动手操作。

——最后展示分法一种是一个一个分都是34块

一种是重叠起来一块分

(2)课件展示全整的二种变化过程,引导总结3块饼的14实际上是一块饼的34,列出完整的算式,并用分数来表示具体的结果。

(3)在教授完例2和例3后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。那么教学设计为请他们观察黑板上的算式和结果,猜测分数与除法之间有什么关系,根据学生不同的认知情况,安排了大量的模仿练习,感性体验数学活动。

练习一:

a.3米长的钢管平均分成3份,每份长多少米?

b.把2米长的钢管平均分成3份,每份长多少米?

c.把1米长的钢管平均分成3份,每份长多少米?

练习二:(具体操作)

a.把4张饼,平均分给5个孩子,每个孩子分得多少快?

b.把2张饼,平均分给5个孩子,每个孩子分得多少快?

c.把2张饼,平均分给5个孩子,每个孩子分得多少快?

在这一组练习中,让孩子动手剪一剪,拼一拼,真实体验每一个分数结果的由来与意义,并且通过落列的算式组:3÷3=1(米)4÷5=45(块)

2÷3=23(米)2÷5=25(块)重点

1÷3=13(米)1÷5=15(块)

体会当的不到整数结果的时候,用分数来表示他们的商,发现分数的分子是除法里的被除数,分母是除法里得出术,在总结完各部分关系与分母公式后,请他们推理一下,除法理由具体要求吗?(除数不能为零)那分数有没有要求呢?说一说理由,教师板书b≠0,引导进行验证从分母所表示的意义说明没有意义。

结合本书的重点,难点,这一部分教学的目的要是学生理解并掌握,分数与除法之间的关系,并能在应用中形成一定的技能。在有层次的练习中,能体验到成功的快乐,建构知识的框架,实现数学思想的逐步深入。

练习设计主要分为以下几个层次:

①强化分数与除法的关系:

a组:7÷13=()1358=()÷()()÷9=5()

b组:(课件展示:4平方米的花坛平均分成大小相同的5快?)

让学生叙述一下你观察到了什么?发展学生的口头表达能力。然学生想一想,你都可以知道什么?发展学生的空间想象观念训练知识的迁移能力。

每块是多少平方米?怎样解答?进一步巩固所学的知识。

②用分数表示商的意义的总体认识。

a组:讨论“15分钟走1千米的路,平均每分走几分之几千米?走了路的几分之几?”

b组:结合练习一回答:每段各是多少米?各占这根钢管的几分之几?

结合练习二回答:每人各分到多少块?各占饼的几分之几?

课程的最后以学习目标进行提纲式小结,便于学生形成知识的网络,在次重申本节的重点和难点,培养学生质疑问难的好习惯教师引导思考练习一中每段的长度都不一样,为什么都各占钢管的13?13米和13有什么不一样?f(1,5)块和15有什么不一样?要将分数与除法之间的关系从认识上、意义上、联系上进行一次升华。给学生一个完整的认识,为今后的继续学习留下个性发展的空间,释放无穷的潜能。

第一部分为新授例题。第二部分为模仿练习

第三部分为总结的分数与除法的关系知识。第四部分为分层次的发展思维。

训练题

这样设计的目的再现了知识产生和发展的过程,体现了一切事物发展的本质特点,更重要的是渗透给学生,从实践中上升为理论,又用于指导新的实践,在实践中检验理论的真实性,从而树立从小爱科学的唯物主义世界观。

分数与除法 说课 分数除以分数说课篇三

1、教材分析:

《分数乘、除法应用题对比》是人教版九年义务教育六年制小学数学第十一册的内容。它是在第十册教学“求一个数是另一个数的几分之几”,以及本册教学“求一个数的几分之几是多少”,以及“已知一个数的几分之几是多少求这个数”的基础上进行的,目的使学生对乘、除法应用题的数量关系和内在联系有进一步的认识,提高分析和解答分数应用题的能力,为进一步学习稍复杂的分数应用题做好准备。

2、教学目标:

(1)认知目标:

①明确分数乘法应用题和分数除法应用题的相同点和不同点;

②掌握解答分数乘、除法应用题的方法。

(2)能力目标:

①提高分析和解答分数应用题的能力。

②培养学生的比较能力。

③培养学生分析和处理数据的能力。

(3)情感目标:

①体验数学与日常生活的紧密联系。

②培养学生团结协作的优良品质。

3、教学重、难点:

教学重点:掌握解答分数乘、除法应用题的方法。

教学难点:分析分数乘、除法应用题的异同点。

小学生年纪不大、经验不多,但他们天真、好动,乐于接受新事物,思维活跃,因此,本节课在教法、学法的采用上突出了以下特点:

1、联系实际,从生活中学。

在我们的生活中,到处充满着数学。本节课教师注重把数学知识与实际生活联系起来,为学生提供丰富的感性认识和生活经验,使学生感到学习数学并不是很难,从而激发他们学习数学的乐趣,为实施创新教育打下良好的基础。

2、 分析问题,从思考中学。

只有思考,才会有所得。本节课教师为学生提供了丰富的素材,让学生有所想,给学生提供充足的思考时间,让学生展开思维的翅膀,在知识的海洋里遨游。

3、促进参与,在交流中学。

交流与合作是知识经济时代社会发展的需要。现代社会,人与人之间越来越需要沟通与互助,越来越需要交流与合作。本节课教师注重让学生通过小组的合作和讨论来发现问题、研究问题和解决问题,培养他们团结协作的优良品质。

教学流程

一、谈话导入,分析问题:

1、现在比原来降价 。

想:这句话把( )看作单位“1”。

( )是( )的 ;

也就是( )是( )的 。

数量关系式:原来的价格×(-)=现在的价格。

2、今年产量比去年增产 。

想:这句话把( )看作单位“1”。

( )是( )的 。

也就是今年产量是( )的( - )。

数量关系式;( )×(-)=今年的产量

学生运用分数的有关知识,根据以上条件说出是以哪个数量为单位“1”的。在学生说话的过程中,很自然地复习了分数及单位“1”的有关知识,为学生进一步组合应用题及进行分数乘除法应用题的对比打下基础。并且使学生感受到数学就在自己身边,数学并不难。

二、导入新课

我们复习了分数乘、除法应用题的数量关系。通过上题发现,有很多题的叙述形式很相似,但解题方法却大不相同。为什么不相同呢?今天我们就来研究稍复杂的分数乘除法的应用题,对比、区别它们之间的异同点。(板书课题)

三、学习新知

(一)出示例题。(板书在黑板上)

1、学校有20个足球,篮球比足球多 ,篮球有多少个?

2、学校有20个足球,篮球比足球少 ,篮球有多少个?

3、学校有20个足球,足球比篮球多 ,篮球有多少个?

4、学校有20个足球,足球比篮球少 ,篮球有多少个?

(1)学生以小组为单位,分组自己分析解答。

在这里为学生创设了一个开放的情境,学生可根据自己的喜好对条件进行组合,培养他们分析和处理数据的能力。学生通过小组的合作,集思广义,在组合应用题的过程中,初步感知到各种分数应用题的不同的解题思路。为分数乘、除法应用题的比较打下基础。

(2)学生汇报。让学生自己说解答过程。

(3)学生观察这些应用题,小组讨论:哪些应用题的解题思路是一样的。

通过讨论,使学生进一步感受分数应用题的不同解题思路。

(二)。分析比较。

1、比较1、3题。

教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论。

(2)全班交流。

(3)师生归纳。

这两道题都是把足球看作单位“1”,单位“1”的量是已知的,求篮球有多少个?就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(2)题是篮球比足球少 ,计算时一个要加上多的数,一个要减去少的数。

2、比较2、4题。

教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论。

(2)全班交流。

(3)师生归纳。

这两道题都是把篮球看作单位“1”,而且单位“1”的量是未知的,因此要设单位“1”的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答。熟练之后也可以直接列除法算式解答。

3、教师小结。

这是本节课的重点,也是本节课的难点。在这里,让学生通过小组讨论,自己进行对比,学生之间既要各抒己见,敢想敢说,敢于问出心中的疑惑;又要认真倾听对方的思路和想法,学会比较、分析。这样,数学课堂就成为全体学生之间进行交流、合作的活动中心。课堂上学生之间的交流与合作,是体现学生主体性的一个重要标志,也是形成信息多向交流和反馈的新型课堂教学结构的重要活动方式。就学习而言,已有认知结构是学生学习的出发点,每个学生总是以自己的认知方式和在已有经验的基础上进行学习的。因此,在数学课堂上学生与学生之间的交流与合作,既可使学生从多角度看问题,也可使学生通过对比发现自己存在的问题。合作与交流,能让所有的学生都体验到成功的喜悦。

三、应用拓展,巩固提高。

分析下面的数量关系,并列式或方程。

1、校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?

2、校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?

3、校园里有杨树25棵,杨树比柳树多 ,柳树有多少棵?

4、校园里杨树有25棵,柳树比杨树少 ,柳树有多少棵?

通过学生对条件的选择,培养了学生处理数据的能力,并在分析数据的过程中,培养学生分析数据的能力,渗透思想教育。

小结本节课的知识及学习方法。

通过本节课知识的小结,回顾本节课所学的知识,加深印象。通过本节课学习方法的小结,使学生掌握科学的学习方法,不仅有现时的价值,而且对学生将来的发展,也有长远的价值。

教材第39页练习十第3~5题。

本节课在例题4小题的贯穿之下,力求遵循知识的发展规律和学生的认识主动性,密切联系数学与实际的生活,充分调动学生的学习主动性,让学生参与到学习的全过程之中,使学生在观察、思考、讨论中总结规律,培养思维能力。教学过程开放,使学生的潜能得到发挥,知识、能力和良好的心理品质得到和谐地发展。

分数与除法 说课 分数除以分数说课篇四

我说课的内容是人教版课程标准实验教科书六年级上册的分数除法单元中的例1与例2。例1是分数除法的意义认识,例2是分数除以整数的计算。在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。

例1先是对整数除法意义的回顾,再由100克=1/10千克,从而引出分数乘除法算式,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积与其中一个因数,求另一个因数的运算’。例2是分数除以整数的计算教学,意在通过让学生进行折纸实验、验证, 引导学生将‘图’与‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。

根据刚才对教材的理解,本节课教学的目标是:

1、通过实例,使学生理解分数除法的意义与整数除法的意义是相同的。

2、动手操作,通过直观认识使学生理解分数除以整数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、经历观察、猜测、实验、验证和归纳的过程,感受数形结合的思想方法,并从中发展抽象思维能力。

本课的重点是理解分数除法的意义和分数除以整数的计算方法;

本课的难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。

为了达成教学目标,本课的教学必须贯彻以学生为主体,坚持启发与发现法相结合的教学方法,引导学生大胆猜想,提出有价值的问题,让学生的思维活动得到有效的提升,动手实践,在体验中、在交流中发现规律。

学习方法上强调以探究学习法和动手操作法为主。认知结构理论告诉我们,学习是学生积极主动的内化过程。只有通过主动参与获得的知识,才是有意义的。因此,在重难点的学习上,通过折纸实验与验证,数形结合,从而实现真正的理解。

开课,就对前一单元所学的分数乘法的计算和一个数乘分数的意义进行复习,目的在于为教学分数除以整数的计算方法打下基础,因为分数除以整数就等于这个分数的几分之一,根据一个数乘分数的意义,就用分数乘几分之一就可以得到结果,而对于分数除法的意义,就直接利用例1的素材导出整数除法的意义再迁移到分数除法的意义。

在教学例1时,我没有直接把教材中的三个问题端出来,而是让学生通过教师给出的信息来提出数学问题,学生编出乘法问题并列式解答后,问学生:你能根据这个乘法问题编出两个除法问题吗?然后再一一列式解答,再通过对这三个算式的观察比较,得到整数除法的意义。这样安排教材,我的理解是:如果直接将素材一一呈现出来,感觉很单调泛味生硬,不能留住学生的注意力和激起学生学习的兴趣,对思维活动就是一种压抑,反过来我这样安排,感觉是把静态的教材动态的出现在学生面前,利用素材自问自答,对学生来说是一次有价值有效的思维活动,对学生的思维能力应该是有一个提升的,同时问题也可以激发学生学习数学的兴趣,吸引学生的注意力。

然后指出问题中是以克为单位,如果以千克为单位,100克应该怎么改写?改写后,算式应该怎么列?后面两题中的单位也改写了,又怎么列式计算?用一系列的问题,迁引出分数乘除法的算式,再通过对分数乘除法算式的仔细观察,观察时引导学生对照整数乘除法的算式,找到之间的共同点,从而得到分数除法的的意义与整数除法的意义相同,我这样教学的想法是:第一因为问题更有挑战性而能更有效激发学生的兴趣;第二锻炼提高学生的观察比较事物的能力;第三通过比较自然得出分数除法的的意义与整数除法的意义相同,让学生有种水到渠成的感觉,体味到在数学中知识是存在相互联系的。

在完成做一做中,学生快速回答了2/3×4=8/3 8/3÷4=( ) 8/3÷2/3=( )的结果后,问:你怎么这么快就得到结果了呢?这个问题能更好让学生利用除法的意义来解决问题,从而加深对除法意义的理解。

分数与除法 说课 分数除以分数说课篇五

1、教材的地位和作用:

这部分内容属于“数与代数”中这一领域,是在学过分数乘法应用题、分数除法的意义和计算法则的基础上进行教学的,为学习分数混合运算奠定基础。

2、学情分析:

五年级的学生对分数有一定的理解,掌握了分数乘法、除法的意义和计算法则,认识了倒数,能运用等式的性质解简单的方程。

3、教学目标:

(1)能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

(2)在解方程中,巩固分数除法的计算方法。

(3)通过解决问题切实体会数学与生活的密切联系,懂得学习数学的意义和重要性,激发学生热爱数学的情感,建立学好数学的信心。

4、教学重点和难点:

教学重点:能用方程正确解答分数除法应用题。

教学难点:体会方程是解决实际问题的重要模型。

美国教育心理学家奥苏贝尔曾说:影响学生学习的重要原因是学生已经知道了什么。

苏霍姆林斯基也说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者,而在儿童的精神世界中,这种需要特别强烈。”

所以我从学生已有的知识和生活经验出发,收集信息、独立思考、发现关系、提出问题,通过合作交流的方式解决问题。提倡解决问题策略的多样化,允许学生表达自己对问题的理解,选择自己最合适的解决方法,变“教师教”为“引导学”。

基于上述分析,我为本节课设计了以下四个基本环节:

引入新课、收集信息——比较发现、得出结论——实践应用、拓展提高——全课小节、达成共识。

(一)引入新课、收集信息:

1、创设情境、引入新课:

法国著名教育家、思想家卢梭说:问题不在于教他各种学问,而在于培养他有爱好学问的兴趣,而且在这种兴趣充分增长起来的时候,教他以研究学问的方法。

兴趣是学习的内动力,为了激发学生的兴趣,课程伊始我先播放一段轻松、欢快歌曲。(播放视频)

在这轻松、和谐的氛围里,孩子们愿意把他们喜欢的课间活动讲给我听?

2、收集信息、提出问题:

随即出示教材中的情境图,从学生感兴趣的活动场景引入,获取基本的数学信息,提出有价值的数学问题,并试着解决。

信息:图上有(20)人参加活动;跳绳的有(6)人;

踢毽子的有(3)人;打篮球的有(4)人;

跑步的有(3)人;踢足球的有(4)人。

问题:跑步的人数是踢球的几分之几?

踢毽子的是跳绳的几分之几?

(二)比较发现、得出结论:

1、引导发现问题:

教师设疑,引导学生发现问题,操场上是有20人在活动吗?学生一定会发现这幅图只呈现了操场的一部分,显然答案20人是错误的。

请同学猜一猜操场上一共有多少人。学生沉思片刻后会汇报许多数据。

教师进一步引导:究竟谁的答案是正确的呢?想不想验证一下?

2、给出解决问题的关键条件:

跳绳的小朋友是操场上参加活动总人数的 ,

3、用自己喜欢的方法解决,在小组中交流并汇报。

学生在试做的过程中会出现以下几种情况:借助线段图用除法计算、数份数的方法、分析数量关系、列方程解。无论是哪种方法,教师都应该给予肯定与鼓励。

让学生在交流中感受不同方法的思维特点,由学习者成为研究者,体验成功的快乐。再引导学生进行系统的分析,找出解决问题最简便的方法。

在比较过程中,学生一定也许会说:前两种方法书写少、计算快、用起来顺手也很简便呀!教师不要立即否定,扼杀孩子们的思考意识;也不要为了完成教学任务急于往下进行。

这时教师可以引导:其实我也很欣赏你的方法,谁能把你认为简便的方法的思路说给我们听?

通过讨论的平台,让大家发现用方程解决就是旧知识的综合运用,属于顺向思维,虽然写起来麻烦,但思考起来会更加容易。

最终得出结论:用方程解决分数除法的实际问题比较简便。

4、巩固练习、深入理解:

为了巩固这种方法,我把教材中的试一试,设计成两个板块:一是口答,二是笔练。这样不仅提高了学生的计算速度,也有助于学生掌握本节的重点。

口答:说出他们的数量关系:

①打篮球的人数是踢足球人数的4/9

②踢毽子的人数是踢足球人数的1/3

③某双休日共有9天,是这个月总天数的3/10

笔练:通过上述数量关系直接列出方程,并解答。

i、操场上打篮球的有4人。

(1)打篮球的人数是踢足球人数的4/9,踢足球的有多少人?

(2)踢毽子的人数是踢足球人数的1/3,踢毽子的有多少人?

ii、某双休日共有9天,是这个月总天数的3/10,这个月

有多少天?

(三)实践应用,拓展提高。

练习内容由三个部分组成,即:基本练习、对比练习、拓展练习。

为了实现教学目标,我们从生活中寻找素材,引入课堂,让学生认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,增强学生的应用意识,切实体会数学与生活的密切联系。

如:第一题我先播放一段视频,让学生弄清什么是打折,及八折的意思,再进行解答。

后面的两道题也与我们的生活息息相关。

х/5=7 3х/4=4 5х/8= 8х=4/7 2х3=6 3х/8=1

1、操场上有27人参加活动,踢足球的人数占总人数的 ,踢足球的有多少人?

2、操场上有9人在踢足球,占参加活动总人数的 ,操场上一共有多少人?

1、原价是多少元?

生活中我们经常会遇到商场内物品打折的情况,你知道

打折是什么意思吗?

通过课前收集生活中的图片信息,让学生弄清八折的意思,再进行解答。

2、李健的身高是150厘米。

(1)李健的身高是妈妈身高的5/16,妈妈的身高是多少厘米?

(2)妈妈的身高是爸爸身高的8/9,爸爸的身高是多少厘米?3、鸡、鹅的孵化期分别是多少天?

鸭的孵化期是28天;

鸡的孵化期是鸭的3/4;

鸭的孵化期是鹅的14/15;

(四)全课小节,让学生谈一谈在本节课里的收获,总结在学习中的不足。

分数与除法 说课 分数除以分数说课篇六

我教学的内容是小学数学第十一册第二单元分数除法应用题例1、例2。这部分内容是在学过分数除法的意义和计算法则、分数乘法应用题、用方程解已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节教学的一个数的几分之几是多少求这个数的应用题,也是由于分数乘法意义的扩展,相应地除法意义的具体含义也有了扩展而产生的新的应用题。根据教材特点和学生实际我确定本节课的

教学目标是:

(1)会分析简单的分数除法应用题数量关系。

(2)能列方程正确解答简单的分数除法应用题。

(3)培养学生初步的逻辑思维能力。教学重点是:能用方程正确解答分数除法应用题。

教学难点是:

确定单位“1”、分析数量关系

本节课我贯彻“以学生为主体,教师为主导,训练思维为主线”的原则

1、自主探究、寻求方法

让学生充分自主探究、寻求分数除法的解题方法。

2、设计教法体现主体

课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。

3、分层练习、注重发展

练习有层次,由尝试练习到综合练习到发展练习,层层深入。

一、导言:

以前我们学过了分数应用题,这节课我们继续研究分数应用题,(板书:分数应用题)。

二、复习:

1.说说下面各题中应该把哪个看作单位“1”,数量之间相等关系怎样?

①吃了一筐白菜的2/5。

②一本书的价格正好是一支钢笔价格的2/5。

③小明体内的水分占体重的4/5。

三、自主探究、解决问题

1、教学例1

①小明体内所含的水分是28千克,占体重的4/5,他的体重是多少千克?

仔细观察看一看有没有什么发现?

独立做,做完组内交流,组长分好工,做好记录,看看哪个小组方法多,你们小组准备由谁发言,用几句话表达自己小组的方法。

小结:老师也认为用方程解比较容易,因为它的解题思路与我们以前学的分数乘法应用题的思路是一致的,也是根据题中的叙述的条件明确把谁看作单位1,然后根据一个数乘分数的意义列出等量关系式,由于单位1是未知的,要设成x,列出方程进行解答。这也是我们本节课所要掌握的已知一个数的几分之几是多少求这个数的应用题用方程解的方法。

2、教学例2。

②小明买一条裤子是75元,是一件上衣的2/3,一件上衣是多少钱?

(看题)(独立完成后说说自己的想法)

3、比较例1、例2有什么不同。

师:例1、例2虽然存在着不同指出,但是解题方法是类似的。我们再做两道题看看是不是这样。(投影出示做一做1、2)。请两名同学在投影片上做,其他同学在本上做,做后请同学叙述怎样做的,为什么这样做。

小结:通过以上的学习,同学们觉得分数应用题在解答时的关键是什么?

4、判断下列说法是否正确。

师:好了,同学们,这节课我们学习了列方程来解已知一个数的几分之几是多少,求这个数的应用题,学好这部分知识对于提高我们解决问题的能力,发展我们的思维有着重要的作用,同学们表现得非常好,希望你们继续努力。

分数与除法 说课 分数除以分数说课篇七

《分数与除法》是人教版义务教育实验教科书五年级下册的教学内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系十分重要。

本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。

1.知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商

2.能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

3.情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的.思想。

理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学。

为了达成教学目标,本课的教学必须贯彻以学生为主体,坚持启发与发现法相结合的教学方法,引导学生大胆猜想,动手实践,在体验中、在交流中发现规律。在教学的进行中,充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。

针对以上的学生情况和教学设想,我设计了这样的过程。

一、激情引入,自主建构。

这一部分的目的是在已有的知识上学习新知识,让学生感知知识产生和发展的过程,为重点的落实,难点的突破铺路搭桥。

(1)学生独立完成课前练习,引入新课。

(2)出示例1:把一块蛋糕平均分给3个人,每人分得多少块?

(3)当他们发现不能得到整数的商时,引导他们讨论应该怎样表示他的结果。

(4)介绍分数表示除法的商的由来。

板书课题 —— 分数与除法

二、在目标的递进中,获得积极的数学学习情感。

这一部分的目的是在学生已初步建立了分数与除法的关系时,将数学活动变成师生之间,生生之间交往互动与共同发展的过程,遵循学生认知的特点,进一步发展思维能力,创造有现实性,挑战性和趣味性的数学活动。

(1)出示例3:把3块饼平均分给4个孩子,每人平均分得多少块?

首先,请他们思考,列出算式。

其次,拿出准备好的圆纸片,小组合作动手操作。

最后,展示分法:一种是一个一个分,一种是重叠起来一块分。

(2)课件展示完整的二种分法,引导总结3块饼的实际上是一块饼的,列出完整的算式,并用分数来表示具体的结果。

(3)在教授完例1和例2后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。引导学生通过 1÷3 =和3÷4=两个算式的比较,体会当得不到整数结果的时候,用分数来表示他们的商,发现分数的分子是除法里的被除数,分母是除法里得除数,在总结完各部分关系与字母公式后,通过两项不同的练习进一步了解分数与除法的关系,

三、掌握知识技能,实现数学思想的深入。

结合本书的重点,难点,这一部分教学的目的要是学生理解并掌握,分数与除法之间的关系,并能在应用中形成一定的技能。在有层次的练习中,能体验到成功的快乐,建构知识的框架,实现数学思想的逐步深入。

分数与除法 说课 分数除以分数说课篇八

这节课内容是在学生学习了分数的意义、初步探索并解决求一个数是另一个数几分之几的实际问题的基础上学习的。理解分数与除法的关系,既是进一步理解分数意义的需要,也是学习把假分数化成整数或带分数以及学习分数与小数互化等知识的基础。

1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;

2.能列式解决求一个数是另一个数的几分之几的实际问题。

3.使学生在探索分数与除法的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

理解分数与除法的关系。

体体会每一个商的由来和表示的含义。

整个教学过程共安排4个环节完成。

出示情境图:把8块饼平均分给4个小朋友 ,每人可以分得多少块?如何列式,为什么?

:分成以下6个层次完成。

第1层,分析问题,列出算式。我首先把刚才的情境图变为:把3块饼平均分4个小朋友,每个人分得多少块?学生很容易将复习题的解题方法迁移过来,列出算式3 4,老师适时板书出来。

第2层,动手操作,探究结果。引导学生观察算式,发现每人分到的饼不满1块时,可以用分数表示。这个分数是多少呢?接着让学生根据课前准备的圆形卡片,在小组内动手做一做。

第3层,组织交流分法,得出答案。可能会出现两种分法。一种是一块一块地分,每人每次分到1/4块,3个1/4块是3/4块。第2种分法,3块一起分,每人分得3块的1/4,即3/4块。老师根据学生的回答将两种分法用电脑动画逐个演示。并相机完成板书:3 4=3/4.

第4层,自主探究。在此基础上,我提出“把3块饼平均分给5个小朋友,每人分得多少块?"让学生自主探索。并让学生将探索的结果在小组内交流。并在组织交流时适时板书:3 5=3/5.

第5层,归纳总结。这时,我指着板书内容提出问题:观察黑板上的两个等式,你发现分数与除法有什么关系?同时板书课题:分数与除法的关系。在学生充分交流后老师小结:被除数相当于分子,除数相当于分母。然后板书:被除数 除数=被除数/除数。最后,让学生理解并掌握分数与除法关系的字母表达式,并让同学们讨论为什么分母不能为0,让其明白其中的道理,板书:a b=a/b.

第6层,尝试练习。先试做“试一试”的题目。反馈时让学生说说是怎么想的?

接着让学生独立做练一练的两组题。第一题要让学生比较一下每组的上下两题有什么不同,进一步理解分数与除法的关系,第二组继续让学生说说是怎么想的。

1、做练习八的第一题。先让学生在小组里说说,再指名口答。

2、做练习八的第二题。独立填写,集体订正。

3、做练习八的第三题。让部分学生说说是怎么向的。

4、做练习八的第四题。要让学生说出题中的问题有什么不同。

5、做练习八的第五题。让学生联系分数的意义填空,再引导学生根据分数与除法的关系列出算式。

。这节课我们学习了哪些知识,你有什么收获和感想?先让学生说一说,老师在适时补充:这节课我们学习了分数与除法的关系,其实数学上很多知识之间都是有联系的,同学们不但要会做题,更要思考这些知识间的内在联系,这样你就会越来越聪明。

分数与除法 说课 分数除以分数说课篇九

数学教学,要让学生在一种积极思维状态下,亲身经历数学知识形成过程,也就是经历一个丰富、生动思维过程,使学生通过尝试活动,掌握基本数学知识和技能,激发学生对数学学习兴趣。因此,在教学中我始终以学生发展为立足点,以自我尝试、讨论探究为主线,以求异创新为宗旨,借助多媒体辅助教学,引导学生动手操作,观察辨析、自主探究,充分调动学生学习积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学过程中,使学生观察、操作、口头表达等能力得以培养,使学生创新意识得以开发与增强。

《分数与除法》是人教版义务教育课程标准实验教科书五年级下册第四单元第二课时内容。本节课,是在分数意义基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商,这样可以加深和扩展学生对分数意义理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。本节课比较抽象,学生容易理解用除法计算,但是理解计算结果比较困难一些。

根据对教材分析和学生实际,依据数学课程标准理念结合教材自身特点和学生认知规律,我确定教学目标如下:

(1)知识目标:

理解和掌握分数与除法关系。

(2)能力目标:

通过动手操作,在学生充分感知基础上,理解并形成分数与除法关系。培养学生实践、观察及创新能力,促进思维发展。通过同学间合作,进而促进学生倾听、质疑等良好学习惯养成

(3)情感与态度目标:

结合学生认知规律,激发学生求知欲望,在具体探究过程中培养学生数学素养以及培养学生自我探索意识和创新精神。

3、教学重点

经历探究过程,理解和掌握分数与除法关系。

4、教学难点

理解用分数可以表示两个数相除商

学生认识事物是由易到难,由浅入深循序渐进,由“感性认识上升到理性认识”认知规律,学生虽然知道了分数意义,但要使学生真正理解分数与除法关系,必须遵循他们认知规律。因此,本节课采取教学方法是尝试教学法,利用学具让学生在具体情境中大胆尝试,通过动手操作,观察发现,引导归纳出分数与除法关系。学生学法与教师教法是一个有机整体所以尝试探究、动手操作、发现问题、整理归纳贯穿于整节课。

总之,力途为学生营造一个宽松、民主学习氛围,充分调动学生眼、口、脑、手等多种感官参与认识活动,让孩子们在积极数学思维状态下,真正感受到“我能行”。

针对以上思想,我说一下教学流程中每一步设计意图:

(一)、复习导入 点明课题

因为本节课是在分数意义基础上进行,所以让学生加深对分数意义理解,明确本节课要干什么。开门见山出示课题。

(二)、 探究新知

1、唤起生成,由6张饼平均分给3个人,怎样列式得出除法,然后根据除法意义顺势引导1张饼平均分成2份、3份、4份怎样列式,然后多媒体给学生以直观形象演示,让学生理解分数可以写成除法。给学生以表象认识。

2、尝试探究,

首先提出问题:3张饼平均分给4个人,每人分几张?然后让学生利用学具动手操作分一分,讨论交流,并让学生展示分过程,把课堂还给学生。同时根据学生汇报多媒体展示分过程。使学生明确三张四分之一就是一张四分之三,所以每人分四分之三张。

这时,当学生对知识理解由感性上升到理性,所以马上进行补充事实,举一反三

2张饼平均分给4个人,每人分几张?3张饼平均分给5个人,每人分几张?这样学生就比较容易迁移知识,得出2/4与3/5.

3、归纳概括

通过以上动手尝试探究,学生经历了知识形成过程,所以放手让学生观察发现分数与除法有什么关系,得出结论。同时使学生初步知道两个整数相除,只要除数不为0,不论能否除尽,都可以用分数来表示商。

(三)尝试练习

接着,就是学生进入当堂练习中,设计有层次、题型多样练习,及时巩固新知,达到当堂学,当堂清效果。使学生更进一步理解本节课所学内容。

本节课,是在分数意义基础上,使学生初步知道两个整数相除,只要除数不为0,不论是被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。

从总体来看,本节课学生能在具体情境中动手操作,大胆尝试,兴趣比较浓厚,而且学生动手分情况也比较好,也能大胆展示,基本上掌握了分数与除法关系。使我感受到数学动手操作是课堂教学一个重要途经。但还存在许多细节问题:

1. 在课堂结构安排上有点前松后紧。

2. 学生展示分过程时没有点到位,有点乱,不太突出。

3. 总结归纳时没有充分放手学生,而且比较急匆匆而过。

4. 学生语言表达能力比较欠缺。

在以后教学过程中要尽量克服这些困难,提高自己课堂教学质量

分数与除法 说课 分数除以分数说课篇十

人教版小学数学五年级下册6~66页——分数与除法。

(一)教材、教学的分析与思考

对于分数,学生并不陌生。在三年级的时候,他们已经初步接触了分数,通过直观和动手操作,初步理解了分数的含义,知道了分数各部分的名称;在这节课内容之前,又进一步学习了分数的产生和分数的意义,这些都是学生学习本节内容的基础。

教材安排了两个例题。例1初步沟通除法和分数的关系;例2明确指出可以用分数表示两个数相除的商。例题后通过适当的练习,在学生应用知识,解决问题,巩固关系的同时,培养他们的探究能力。本课时内容,为学生进一步学习分数的有关知识奠定基础。

分数是一个内涵丰富的数学概念,它的意义是多层次的。在本节课之前,学生是从“行为”(平均分物体)入手认识分数的;本节学习分数与除法的关系,则是对分数的进一步的理解——分数可以表示除法运算的结果。在本课教学中,我力求从这样一个角度去突出这一点。

(二)教学目标

在具体的问题情境中,探索和理解除法与分数的关系,会用分数表示除法的商,并从中体会到用分数表示除法商的优越性。

能在几组例证的探索过程中,初步感受数学建模思想,培养观察、比较、归纳等探究的能力。

在对分数意义的理解中感受数学知识的发展变化规律,激发学习数学的积极情感。

(三)重点、难点

本课的教学重点是发现、掌握除法与分数的关系;难点是理解两个数相除商用分数表示。

在这一节课中,我以学生熟悉的平均分问题和分数的意义作为学生学习的基点,借助实验操作、数形结合的方法,让学生自主探索,在经历

(b≠0)这一知识的形成过程中,逐步构建除法和分数之间关系的模型,学会用分数这个新的数表示除法的商。

开门见山,抛砖引玉。

1、把6颗糖,平均分给3人,每人分得()颗。

2、把3颗★平均分给3人,每人分得()颗。

3、把1块月饼平均分给3人,每人分得()块。

【设计意图:虽然只是简单的3道题目,但却复习了旧知识,同时又巧妙地引出新知识,抛砖引玉,为下面的研究埋下伏笔。】

承上启下,初步建模

1、承接前一个问题:把1块月饼平均分给3人,每人分得多少块?

根据整数乘法的意义,列出除法算式1÷3;根据分数的意义,每人可得这块月饼的,借助月饼图可知,1块月饼的也就是块月饼。因此1÷3的商可以用分数表示。

[设计意图:在老师的启发下,学生根据整数除法的意义列出除法算式;根据分数的意义,直接用分数表示结果;其次借助数形结合,巧妙地把除法计算与分数初步联系起来。]

2、把题目改为:把1块月饼平均分给4名、5名、6名同学,每人分得多少块?

3、追问:如果平均分给7名、8名、9名同学,每人分得多少块?如果是b名同学呢?

[设计意图:通过具体的问题情境,初步理解:如果被除数是1,不管除数是几,都可以用几分之一的分数表示1÷几的商。初步建立的数学模型,为下面的研究奠定基础。]

深入探究,理解含义

出示例2:把3块月饼,平均分给4名同学,每人分得多少块?

通过“估算——猜想——验证——汇报反馈———小结”这几个环节,明确:可以用分数表示3÷4的商。

我利用多媒体课件设计两个预案,结合学生的汇报演示。

预案1:先把1块月饼平均分成4份,每人分1份,就是块;再用同样的办法平均分另外2块同样大小的月饼。这样每人分得3个块,就是块。

预案2:把3块月饼叠在一起平均分成4份,每人取其中的1份,就是3块饼的。1份有3个块,拼起来就是1块饼的,即块。

归纳类比,发现规律

1、把3块月饼,平均分给10名同学,每人分得多少块?

2、把7块月饼,平均分给10名同学,每人分得多少块?

3、把x块月饼,平均分给15名同学,每人分得多少块?

列出算式,观察比较,发现规律:

检测反馈,拓展提高

1.用分数表示下面各题的商

7÷8=9÷13=9÷8=11÷10=

2.想一想,填一填

完成书本课后做一做第2题,并添加这一道题目

通过=()÷(),说明除法和分数之间的互逆关系;通过

提问,“()可以是任何数吗?”引导学生思考并得出:因为除数和分母都不能为0,所以。

3.计算下面各题的商

4÷7=1÷2=5÷3=45÷5=

9÷3=4÷5=2÷3=1÷6=

4.解决问题

(1)一位火炬手跑1千米要15分钟,平均每分钟跑几分之几千米?1÷15=(千米)

(2)如果要重新铺设一块15平方米的主席台,需要41块砖,平均每块砖占地多少平方米?15÷41=(平方米)

5.思考提高题:0.7÷2的商也能用分数表示吗?

本节课通过营造宽松的学习氛围,通过“抛——承——探——引”这几个环节,使学生经历了(b≠0)这一知识的形成过程,较好地构建了除法与分数关系这一新的数学模型,明确可以用分数表示两个数相除的商。而且板书简明扼要,重点突出,能有效地突出教学的重点和突破教学的难点,使本课教学目标能有效达成,使课堂教学充满生命的活力。

分数与除法 说课 分数除以分数说课篇十一

各位老师,你们好!今天我说课的内容是:人教版义务教育课程标准实验教科书,六年级上册的第三单元,分数除法的意义和分数除以整数。分数除法的意义及计算方法是本单元的重要内容。是在学生学习了分数乘法和求倒数的基础上进行教学的,是分数除法教学的起始课,为学生以后学习分数四则混合运算和分数除法应用题打下坚实的基础。

六年级学生在二年级时已经知道了整数除法的意义,在本册知道了分数乘法的意义、计算方法和求一个数的倒数的方法,这些已有的知识为学生探索本课新知打下了坚实的基础。学生在学习分数乘法的过程中,通过折一折、涂一涂等活动探索出了分数乘法的意义和计算方法,学生可以运用同样的方法探索分数除以整数的计算方法。学生对于折纸活动很感兴趣,在“玩”的过程中能够感知分数除以整数的基本算理,可以归纳出分数除以整数的计算方法。

根据新课标的要求和教材的特点,结合六年级学生的认知能力,本节课我确定如下的教学目标:

1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。培养学生动手能力及发现问题、解决问题的能力。

2、通过富有启发性的问题情景和折一折、图一图等探索性的学习活动,引导学生主动参与,独立思考,合作交流,形成计算技能。

3、在教学中渗透转化的思想,让学生充分感受转化的美妙与魅力。体验其中的成就感,增强学生学习数学的自信心。

根据本节教学内容的特点,结合我班学生的实际情况。我把本节课的教学重点和难点确定为:

重点是理解分数除法的意义和分数除以整数的计算方法;

难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。

为此,我设计了一下的教学环节,并采取了相应的教学方法、指导学生学习。

旧知铺垫—知识迁移—自主探究—巩固提高—完善总结。

课件、5等份长方形白纸、直尺、彩色笔。

复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

先复习倒数,由同桌两人互相出题,其中一人报数,另一个人说出它的倒数。再完成分数乘法两道题,3个1/4是多少?3/7的1/3是多少?让学生说一说意义和计算方法。

【设计意图】本节课的内容是以倒数和乘法计算为基础的。分数除以整数的计算方法与倒数紧密联系,因此,在引入新课之前,带领学生系统深入地复习倒数和分数乘法的相关知识是很有必要的。

(出示3盒标注100克的水果糖)问:共重多少克?先请学生列出乘法算式,借此改编成两道整数除法应用题,并列出两个除法算式。这时引导学生观察两个除法算式与乘法算式的关系,学生发现除法是乘法的逆运算,同时得出整数除法的意义。已知两个因数的积和其中的一个因数,求另一个因数的运算。

如果以千克作单位又该怎样做呢?先请学生先独立思考,再试着写一写,接着汇报列式。

预设学生回答有两种形式的算式:

(1)整数形式:100×3=300(克)=0.3(千克)

(2)小数形式:100克=0.1千克;0.1×3=0.3(千克)

(3)分数形式:100克=1/10千克;1/10×3=3/10(千克)

【设计意图】这样的处理不仅有利于学生系统建构整个乘法的意义,而且,还能促使学生自然而然的把分数除法意义与整数除法、小数除法意义统一起来。这样一来,接下去的理解就显得水到渠成啦。

进一步引导学生对这三种形式进行观察比较,请学生说一说他的发现,从而理解分数除法的意义与整数、小数除法的意义都相同。并试着用自己的语言小结分数除法的意义。同时板书课题。

完成数学书第28一页的做一做和练习八的第一题。目的是更好的理解分数除法的意义,为后面的学习做好铺垫。

学生两人一组,先独立思考,在互相交流,然后折一折、图一图,动手操作研究问题。

预设学生回答:

学生甲.因为2×(2/5)=4/5,所以(4/5)÷2=2/5

这是受刚才所学除法意义的影响,迁移而来;

学生乙.(4/5)÷2=4÷(2/5)=2/5

大部分学生是竖着对折,将4/5平均分成2份,其中一份是这张纸的2/5,看到4与2的倍数关系,想当然的在计算。

学生丙.(4/5)÷2=(4/5)×(1/2)=2/5

学生将长方形纸横着折,有部分学生能说出用(4/5)×(1/2),就是求4/5的1/2是多少。

师:乙的方法:4/5里面有()个()/(),(4/5)÷2表示平均分成几份,每份有()个()/();(课件演示)丙的方法:把4/5平均分成几份,每份就是4/5的()/(),就是(4/5)×()/()。(课件演示)

【设计意图】通过这个折法的体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它的1/2,也就是说始终可以将÷2转化为乘以1/2,再利用课件动画演示,横着平均分,其中的一份占4/5的1/2,就是求出4/5的1/2是多少?根据一个数乘分数的意义就用4/5乘1/2,就可得其中的一份是这张纸的几分之几。然后在黑板上板书计算过程。

结合上面几种算法,你认为分数除以整数的计算方法可能是怎样的?学生乙和学生丙这两种方法学生都可能选择。我们进一步往下研究。这时并不急于统一思想,转而问学生把一张纸的4/5平均分成3份,每份是这张纸的几分之几?要求先折一折,涂一涂,再计算

当再次折纸时,学生采用自己刚才的算法计算4/5÷3的商,有的学生可能会发现自己刚才的的算法不适合本题。他们就会倾向于感知“把一张长方形纸的4/5平均分成3份,图出其中的一份,就是图出4/5的1/3”。当学生确定了这种观点后,离分数除以整数的计算方法就又进了一步。

然后进行反馈,并引导思考:

(1)平均分成3份,每份是4/5的1/3?求一个数的几分之几又应该怎么计算呢?

(2)为什么不选学生甲或学生乙这两种方法?通过验证说明丙比甲和乙方法更实用。

此时通过对比和思考,应该说对学生丙的方法已经有了较为深刻的认识。

【设计意图】苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”学习不是学生被动接受老师授予的知识,也不是知识的简单积累,它是学习者认知结构的组织和重组,是学生主动建构知识意义的过程。一开始初步比较哪种方法好,学生此时并没有什么感觉;而体验4/5÷3的求解过程,使学生自觉的在心里进行了比较,也就是主动的开始建构认识,这时加深了学生对分数除以整数意义的理解。

1.这时问学生,其它这样的分数除法的计算是不是也和刚才两题一样呢?请学生用4/5分别除以4或5等几个整数,来进一步实验和验证分数除以整数的计算方法。然后统一看法后,一起来总结分数除以整数的计算方法

【设计意图】在理解例题的基础上,抛出一个疑问:其它这样的分数除以整数的计算是不是也能将除数转化为乘以它的倒数呢?从学生的思维历程看,这真是一波刚平,一波又起。促使学生积极思考,并产生要进行实验和验证的动机。

2.反馈交流。

归纳:一般化计算方法用符号表示:a÷b=a×(1/b)(b不为0)

引导学生观察:形式上看什么变了,什么没变?

【设计意图】这里不仅是为了培养学生的符号意识,目的在于培养学生的概括能力,促进更好的理解。现代教学论认为:数学课在经历了感性交流和实践探索以后,应该在数学层面上形成对知识的客观性及其本质的更为深刻的理解,从而形成科学的态度和严谨的思维。

(7/15)÷4=(7/15)×()

(5/16)÷6=(5/16)(1/6)

(3/10)÷5=()()

这样的图式训练对正确掌握分数除法的一般化算法是很有效的。因为小学生的思维毕竟还具有很大的直观性,图式的强化将促使学生在理解算法时有一个直观的支撑,这样的理解也就愈深刻。

(2/3)÷4(5/6)÷5(3/8)÷6(4/9)÷7

(1)将2/3米长的丝带剪成同样长的5段,每段有多长?

(2)小红3天看了一本书的1/5,照这样计算,看完这本书要多少天?

整个练习的设计突出分数除法计算方法的巩固,同时也安排了应用练习,尤其是第二题,还注意了学生逻辑推理能力的培养。

总之,本节课始终以‘落实学生主体地位、发挥教师主导作用’为指导思想,不断引导学生进行类比、比较、探究、实验和验证,从特殊到一般,由除法到乘法,促使学生积极主动的构建认识,发展思维,形成有效课堂。

以上教学程序的设计遵循学生的认知规律和年龄特点,对计算进行探究式教学,学生是学习的主人,让学生自主探究,交流,让学生体验成功的喜悦。学生在教师的引导中操作、思考、验证解决问题,从而使学生获得了知识,发展了智力,培养了积极的学习情感,使课堂焕发了活力。

我设计的板书,目的是突出教学的重点和难点,让学生对新知识的生成一目了然,加深印象。

分数除法的意义和分数除以整数

例1每盒水果糖重100g,3盒重多少g?(kg)?

100×3=300(g)0。1× 3=0。3(kg)(1/10)×3=3/10(kg)

300÷3=100(g)0。3÷ 3=0。1(kg)(3/10)÷3=1/10(kg)

300÷100=3(盒)0。3 ÷0。1=3(盒)(3/10)÷(1/10)=3(盒)

分数除法的意义与整数除法和小数除法的意义相同:都是已知两个因数的积与其中的一个因数,求另一个因数的运算。

例2把一张纸的4/5平均分成2份,每份是这张纸的几分之几?

方法a。2×2/5=4/5,所以(4/5)÷2=2/5

方法b.(4/5)÷2= 4÷(2/5)= 2/5

方法c.(4/5)÷2=(4/5)×(1/2)= 2/5

分数除以整数(0除外),等于分数乘这个整数的倒数。

分数与除法 说课 分数除以分数说课篇十二

分数除法是人教版课程标准实验教科书六年级上册的分数除法单元中的例1和例2。为了让学生更好的学习,为大家分享了分数除法的说课稿,欢迎借鉴!

本课是新世纪版《义务教育课程标准实验教科书》五年级下册第25页-26页的内容。这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把4/7平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是4/7 ÷2,被除数4/7的分子式能被除数整除的,而第(2)题的算式是4/7 ÷3,被除数4/7的分子是不能被3整除的。无论哪一种方法,目的都是就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

通过分析,我认为这节课应该达到以下的教学目标:

1、在具体情境中,借助操作活动,探索并理解分数除以整数的意义。

2、探索分数除以整数的计算方法,并能正确计算。

3、在分数除法算理探究中,渗透转化思想。

理解分数除法的意义,掌握分数除以整数的计算方法。

分数除以整数计算法则……

一、旧知复习,蕴伏铺垫

(1)求下列各组数的倒数。

(2)把2张长方形的纸平均分成2份,每份是多少?把1张长方形的纸平均分成2份,每份是多少?学生理解题意列出算式,并说出每个算式表示的意义。

二、感知分数除法的意义

课件出示:把一张长方形纸的4/7平均分成2份,每份是这张纸的几分之几?

1、提问:4/7表示什么意思?(是把单位1平均分成7份,取其中的4份)

2、把4/7平均分成2份,也就是把图上的哪一个部分平均分成2份?得多少呢?

3、谁来说说你是怎样想的?

学生可能会回答:

1)把这4份平均分成2份,每份是2,占这张纸的2/7。

2)4/7里有4个1/7,平均分成2份,每份就是2个1/7,是2/7。

4、怎样列式计算呢?(板书:4/7÷2=)到底应该怎样计算分数除法呢?下面请同学们和老师一齐来探索分数除法的计算方法。(板书课题:分数除法(一))

三、大胆猜想,举例验证k12教育空间

1、提问:想一想,如果不看图,你会计算4/7÷2=2/7吗?你能提出你的大胆猜想吗?

学生可能会得到“分母不变,被除数的分子除以整数得到商的分子”的结论,举例验证。

师:大胆地猜想是一种非常好的数学思考方法,但还要经过科学的验证。

2、课件出示:把一张长方形纸的4/7平均分成3份,每份是这张纸的几分之几?

师:可以列出算式吗?

四、激发矛盾,再次探究

1、提问: 4/7÷3这道题与刚才那几道有什么不同?(分数的分子不能被除数整除)

如果要算4/7÷3刚才的方法还能用吗?

师:看来我们要换一个思维方式探索能普遍运用的方法。

2、提问:把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们用课前准备的图形分一分、涂一涂。涂好后在四人小组内交流一下怎样分。

3、你是怎样分的?

(把4/7平均分成3份,每一份就是这张纸的4/21。)

4、把4/7平均分成3份,这其中的一份实际上就是4/7的几分之几?求4/7的1/3我们可以用什么方法来计算?(板书)

5、对照这两道算式,你有什么想法吗?

师:把4/7平均分成3份,就相当于求4/7的1/3,结果都是4/21。因此,中间我们可以用等号连起来。你们看,这样,原来的除法算式就转化成了什么算式的?什么变了?什么没变?这样有什么作用?

师:分数除以整数,就等于分数乘以整数的倒数。

6、小结:同学们真能干!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要的方法。

小结:这就是分数除以整数的常用的方法,谁来说一说这种算法是怎样的?那么0能不能作除数呢?所以,这里还要补上一个条件(0除外)。

7、在今后的分数除法计算中,我们常用这种方法。因为无论分数的分子能否被整数都可以进行计算,不受什么条件限制,它的应用更普遍。当然,分数的分子如果正好能被整数整除时,我们也可以应用第一种算法计算,具体问题具体分析,做题时要合理灵活地选择计算方法。

五、巩固提升

1、引导学生完成填一填,想一想。(学生独立完成,全班交流。)

2、引导学生完成试一试。

谈一谈这一节课你有哪些收获?

分数与除法 说课 分数除以分数说课篇十三

义务教育课程标准实验教科书第三单元分数除法解决问题例一。

本节课是分数除法之解决问题的起始课,是在学生学生已经学习了运用分数乘法解决问题的基础上进行教学的。用算术方法解决这些实际问题,需要逆向思考,及从“已知一个数的几分之几是多少,求这个数”的角度去理解数量关系和算理。所以教材采用方程解发,只要根据分数乘法的意义,顺向思考,就能找到等量关系并列出方程。本节课是学生接触单位“1”是未知情况的开始,这是本节课要为学生展示的地方,同时也是解决问题的关键。

1、发现单位“1”的另一种情况,即单位“1”是未知的情况。

2、运用方程解决问题。

3、进一步培养学生有条理的分析题目。

题目贴纸,小黑板。

(一)复习旧知,启发导入。

1、出示小黑板第一题:有10道数学题,甲做了其中的 ,他做了多少道题?(此题是学生已经掌握的内容,在此起到抛砖引玉的作用。)

教师提问:⑴单位“1”是?你是如何找出来的?⑵如果用

表示单位“1”,你能把这个线段图补充完整吗?⑶怎样列式?

2、出示小黑板第二题:一本200页图书,乙读了这本书的 ,丙读的是乙的 ,求丙读了多少页?

教师提问:⑴单位“1”是?你是如何找出来的?⑵如果用

表示单位“1”,你能把这个线段图补充完整吗?⑶怎样列式?

3、师:这是我们之前学习过的分数应用题,同学们认真观察,我们原来学的这些题的单位“1”有一个什么共同特点?是已知的还是未知的?那么,单位“1”如果是未知的,该怎么解决问题呢?今天我们就一起来继续研究解决问题。(揭示课题)

【设计意图】通过两道题的热身,使学生回顾了解决问题的思考步骤,同时,通过观察发现了单位“1”都是已知数这一特点,从而引发猜想:是否有单位“1”未知的情况呢?进而引入新课的学习。这符合学生的认知顺序,便于学生发现探讨。

(二)引入情景,探讨新知。

1、贴:儿童体内的水分约占体重的

教师引导:

⑴谁能给大家分析分析这句话?

⑵咦,好像没什么特别的啊。这还有一个条件呢!(贴)小明的体重?

⑶请你独立思考,然后可以用线段图的方式,也可以找出关系式。总之,用你喜欢的方式在练习本上分析题意,一会我们交流。(重点分析题意,画出线段图,写出关系式)

【设计意图】学生在课堂中必须要留给学生独立思考的时间。分析的方式方法因人的喜好不同而异,只要能够理清题意的,都给以肯定。体现思维的多样化。

⑷你发现这道题的特别之处了吗?生:单位“1”是未知的。

⑸这样单位“1”未知的问题,我们之前没有学过。同学们,请你开动脑筋,想想用我们以前的方法能不能解决这个难题呢?小组内讨论一下。

⑹全班交流解法,鼓励多种方法。板书方程解法,重点讲解方程解法。

【设计意图】由于学生第一次接触这类问题,还是以容易理解的方程解法为主。让学生多说思路,训练学生条例性思维。

2、贴我的体重是爸爸的

小明的爸爸体重是多少千克?

例题的第二问,放手给学生,独立思考,画图,用方程解决。最后全班交流。

【设计意图】给学生动脑动口的机会,仿照前一题的分析,放手让学生经历思考分析的过程。进一步培养学生解决问题的能力。

(三)多样练习,巩固新知。

课本40页,练习十:

1、做练习十的第1题。

让学生先读题,再分组讨论,然后每组派代表回答,并要说明理由。

2、做练习十的第2题。

让学生独立完成。检验时要学生说明理由。

3、做练习十的第3、4题。

让学生独立完成。做完后集体订正。

(四)课堂小结,总结全课:经过例题的学习以及练习题的巩固,学生可以体会到本节课解决问题的特点与解决方法。由学生自由的进行总结交流,最后由教师进一步补充。

(五)作业设计:练习十的5题。

本节课,我抓住了单位“1”由之前的已知变为如今的未知,这一台阶进行课堂设计。总的来说,基本上可以突出本节的重点。但是,在题目的分析上,仍然欠缺发挥学生主动性,让更多的学生站起来分析题目。以至于整节课显得呆板,死气沉沉。今后,我要更加精心的设计问题,要引导学生去思考、去交流。让我的数学课堂成为学生交流思想的舞台,迸溅出更加绚丽的思维火花。

分数与除法 说课 分数除以分数说课篇十四

“分数与除法的关系”这一教学内容,是小学数学第十册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。

本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。

分数与除法的关系这一小节的目标有以下几点:

1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。

2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。

本课材的内容是由以下几部分组成的:

第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。

第二部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。

第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。

第四部分:是教学有关单位名称之间的转化。

本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。

在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。

材料准备:一米长的绳子一条,每个学生准备三个大小相同的圆纸片,水彩笔、直尺等文具。

【本文地址:http://www.xuefen.com.cn/zuowen/2513801.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档