作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。那么教案应该怎么制定才合适呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。
初中一元一次方程教案篇一
(一).知识与技能
会利用合并同类项解一元一次方程.
(二).过程与方法
通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.
(三).情感态度与价值观
开展探究性学习,发展学习能力.
二、重、难点与关键
(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.
(二).难点:会列一元一次方程解决实际问题.
(三).关键:抓住实际问题中的数量关系建立方程模型.
三、教学过程
(一)、复习提问
1.叙述等式的两条性质.
2.解方程:4(x-)=2.
解法1:根据等式性质2,两边同除以4,得:
x-=
两边都加,得x=.
解法2:利用乘法分配律,去掉括号,得:
4x-=2
两边同加,得4x=
两边同除以4,得x=.
(二)、新授
公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.
题目中的相等关系为:三年共购买计算机140台,即
前年购买量+去年购买量+今年购买量=140
列方程:x+2x+4x=140
如何解这个方程呢?
2x表示2x,4x表示4x,x表示1x.
根据分配律,x+2x+4x=(1+2+4)x=7x.
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.
下面的框图表示了解这个方程的具体过程:
x+2x+4x=140
合并
7x=140
系数化为1
x=20
由上可知,前年这个学校购买了20台计算机.
上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.
例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.
分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.
问:本题中相等关系是什么?
答:甲组人数+乙组人数+丙组人数=60.
解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:
2x+3x+5x=60
合并,得10x=60
系数化为1,得x=6
所以2x=12,3x=18,5x=30
答:甲组12人,乙组18人,丙组30人.
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.
(三)、巩固练习
1.课本第89页练习.
(1)x=3.
(2)可以先合并,也可以先把方程两边同乘以2.
具体解法如下:
解法1:合并,得(+)x=7
即2x=7
系数化为1,得x=
解法2:两边同乘以2,得x+3x=14
合并,得4x=14
系数化为1,得x=
(3)合并,得-2.5x=10
系数化为1,得x=-4
2.补充练习.
(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)
解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个.
列方程3x+2x=32
合并,得8x=32
系数化为1,得x=4
黑色皮块为43=12(个),白色皮块有54=20(个).
(2)设全书共有x页,那么第一天读了(x+2)页,第二天读了(x-1)页.
本问题的相等关系是:第一天读的`量+第二天读的量+还剩23页=全书页数.
列方程:x+2+x-1+23=x.
四、课堂小结
初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.
合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.
五、作业布置
1.课本第93页习题3.2第1、3(1)、(2)、4、5题.
2.选用课时作业设计.
合并同类项习题课(第2课时)
一、解方程.
1.(1)3x+3-2x=7;(2)x+x=3;
(3)5x-2-7x=8;(4)y-3-5y=;
(5)-=5;(6)0.6x-x-3=0.
二、解答题.
3.甲、乙两地相距460千米,a、b两车分别从甲、乙两地开出,a车每小时行驶60千米,b车每小时行驶48千米.
(1)两车同时出发,相向而行,出发多少小时两车相遇?
4.甲、乙二人从a地去b地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达b地,求a、b两地之间的距离.
答案:
二、2.705人,设育红小学1995年学生人数为x人,列方程320=x-150.
3.(1)4小时,设出发后x小时相遇,列方程60x+48x=460.
(2)3小时,设b车开出后x小时两车相遇,列方程60+60x+48x=460.
4.3千米,设a、b两地间的距离为x千米,-=.
5.1分钟,设经过x分钟两人首次相遇,列方程550x-250x=400.
初中一元一次方程教案篇二
教学目标
基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想
方法:通过将实际问题转化成数学问题,培养学生的建模思想;
基本活动经验体会解决实际问题的一般步骤及盈亏中的关系
教学重点
探索并掌握列一元一次方程解决实际问题的方法,
教学难点
找出已知量与未知量之间的关系及相等关系。
教具资料准备
教师准备:课件
学生准备:书、本
教学过程
一、创设情景引入新课
观察图片引课(见大屏幕)
二、探究
探究销售中的盈亏问题:
1、商品原价200元,九折出售,卖价是元.
2、商品进价是30元,售价是50元,则利润
是元.
2、某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是元.
3、某种品牌的`彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元.
4、某商品按定价的八折出售,售价是14.8元,则原定售价是.
(学生总结公式)
熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系
三、探究一
分析:售价=进价+利润
售价=(1+利润率)进价
亏?
(2)某文具店有两个进价不同的计算器都卖64元,
其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?
(3)某商场把进价为1980元的商品按标价的八折出售,仍
获利10%,则该商品的标价为元.
注:标价n/10=进(1+率)
(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的
价格,某种药品在涨价30%后,降价70%至a元,
则这种药品在20涨价前价格为元.
四、小结
通过本节课的学习你有哪些收获?你还有哪些疑惑?
亏损还是盈利对比售价与进价的关系才能加以判断
小组研究解决提出质疑
优生展示讲解质疑
五、作业布置:
板书设计
一元一次方程的应用-----盈亏问题
相关的关系式:例题
课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
初中一元一次方程教案篇三
我们这堂课主要有五个特色:
1、学而时习之
2、新课当旧课上
3、重视引导学生再创造,再发现
4、突出学习和强度,角度和反思
5、创设情景,让学生主动积极参与
一、学而时习之
二、新课当旧课上
三、重视引导学生再创造、再发现
b组训练题较a组灵活,适用于学有余力的学生
第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性
四、突出学习的速度、角度、强度和反思
例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的
另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。
五、创设情境,让学生主动积极参与
初中一元一次方程教案篇四
知识与能力:
1、通过对典型实际问题的分析,体验从算术方法到代数方法是一种进步、
过程与方法:
1、能结合实际问题情境发现并提出数学问题、
情感态度与价值观目标:
1、勤于思考,乐于探究,敢于发表自己的观点;
2、以积极的态度与同伴合作,从解决实际问题中体验数学价值、
重点
会用一元一次方程解决实际问题、
难点
将实际问题转化为数学问题,通过列方程解决问题、
初中一元一次方程教案篇五
1.知识目标
(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2.能力目标
(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3.情感目标:
(2)培养学生严谨的思维品质;
(3)通过学生间的互相交流、沟通,培养他们的协作意识。
1.弄清列方程解应用题的思想方法;
2.用去括号解一元一次方程。
1.括号前面是-号,去括号时,应如何处理,括号前面是-号的。,去括号时,括号内的各项要改变符号。
2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。
一、创设情境,提出问题
问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。
学生思考,根据自己对一元一次方程的理解程度自由编题。
问题2:解方程5(x-2)=8
解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
(教学说明:给学生充分的交流空间,在学习过程中体会取长补短的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)
二、探索新知
1.情境解决
问题1:设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。
问题2:教师引导学生寻找相等关系,列出方程。
根据全年用电15万度,列方程,得6x+6(x-20xx)=150000.
问题3:怎样使这个方程向x=a的形式转化呢?
6x+6(x-20xx)=150000
去括号
6x+6x-12000=150000
移项
6x+6x=150000+12000
合并同类项
12x=162000
系数化为1
x=13500
问题4:本题还有其他列方程的方法吗?
用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+20xx)=150000.(学生自己进行解题)
归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是+号,把+号和括号去掉,括号内各项都不改变符号;括号前面是-号,把-号和括号去掉,括号内各项都改变符号。)
去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是-号,记住去括号后括号内各项都变号。
2.解一元一次方程去括号
例题:解方程3x-7(x-1)=3-2(x+3)
解:去括号,得3x-7x+7=3-2x-6
移项,得3x-7x+2x=3-6-7
合并同类项,得-2x=-10
系数化为1,得x=5
三、课堂练习
1.课本97页练习
四、总结反思
1.本节课你学习了什么?
2.通过今天的学习,你想进一步探究的问题是什么?
(由学生自主归纳,最后老师总结)
四、作业布置
1.课本102页习题3.3第1、4题
2.配套资料相关练习
初中一元一次方程教案篇六
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤.
课堂教学过程设计
一、从学生原有的认知结构提出问题
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
初中一元一次方程教案篇七
本课安排在第1章有理数之后,属于《全日制义务教育数学课程标准(实验稿)中的数与代数领域。
方程有悠久的历史,它随着实践需要而产生,被广泛应用。从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。
本课中引出了方程、一元一次方程等基本概念,并且对根据实际问题中的数量关系,设未知数,列出一元一次方程的分析问题过程进行了归纳。以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。列方程中蕴涵的数学建模思想是本课始终渗透的主要数学思想。
在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式方程。这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。
算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的`突破。正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。
1、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。
2、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。利用率100%。
3、智能的提高与训导:在与他人交流探究过程中,学会与老师对话、与同学合作,合理清晰地表达自己的思维过程。
4、情感修炼与开导:积极创设问题情景,认识到列方程解应用题的优越性,初步体会到从算式到方程是数学的进步的含义。
5、观念确认与引导:通过经历方程这一数学概念的形成与应用过程,感受到问题情境分析讨论建立模型解释应用转换拓展的模式,从而更好地理解方程的意义。结合例题培养学生观察、类比的能力和渗透数形结合思想。
通过问题情境,建立数学模型,难度较大,为此要充分引导学生关注生活实际,仔细分析题目题意,促使学生朝数学模型方面理解。
(一)创设情景、引入新课
同学们知道南通市的东城区吗?那宽广的人民东路延伸段正吸引着许多投资者的目光,南通市最大的环保热电厂已在东城区的新胜村拔地而起(图片展示),让我们乘36路公交车去感受一下吧!
假设36路公交车无障碍匀速行驶,途经小石桥、国胜东村、观音山三地的时间如表所示:
地名时间
小石桥8:00
国胜东村8:09
观音山8:17
先让学生读题,然后教师指出:这是一个行程问题,而行程问题一般借助于直线型示意图,教师首先画出下图,标出两端地点。
小石桥观音山
最后师生共同逐句分析,并提问:你从此题中可以获得哪些信息,让学生自由发挥,最后,教师作如下总结:
1、看表格有:
从小石桥到国胜东村有________分钟;从小石桥到观音山有_______分钟;
从国胜东村到观音山有______分钟。
2、你能画出汽车所经过四个地方的顺序图吗?不妨试一试;对照示意图,让学生指出有关路程的信息。教师最后整理成如下示意图:
小石桥国胜东村新胜村观音山
(二)动手实践、发现新知
你会解决这个实际问题吗?不妨试一试。(以同桌同学或前后两桌为一组,讨论交流一下此题怎样解,教师巡视之后,请两位同学上黑板板演,教师评讲时,让学生指出每个式子的意义。)
如果学生中有人利用方程做出,教师分析左右两边的意义;如果没有,则作如下提示:
如果设小石桥到新胜村的路程为x千米,教师根据示意图,提出下列问题,让学生自主讨论口答:
1、小石桥到国胜东村有_____千米,小石桥到观音山有_____千米。
2、小石桥到国胜东村行车_____分钟,小石桥到观音山行车_____分钟。
3、从小石桥到国胜东村的汽车速度为_____千米/分。
让学生口答,请学生判断修正,并提出此题中有哪些相等关系?从小石桥到国胜东村的汽车速度与从小石桥到观音山的汽车速度相等吗?由此启发得出方程:
指出:以后我们将学习如何从此方程中解出未知数x,从而得出小石桥到新胜村的路程。
(三)类比分析、总结提高
1、方法解题时,列出的算式中只能用已知数表示;而方程是根据问题的相等关系列出的等式,其中既含有已知数,又含有未知数,即方程是含有未知数的等式。同学们也看到列方程比较方便,而算式较繁。
2、列方程的步骤
让学生根据例子,总结出列方程的三步骤:(1)设字母表示未知数;(2)找出问题中的相等关系;(3)写出含有未知数的等式方程。
3、对于上面问题,你还能列出其它方程吗?如能,你依据哪个相等关系?(学生讨论,代表发言)
(四)例题分析、揭示课题
同学们是否参加过学校的义务劳动呢?下面一起讨论义务为学校搬运砖块的问题。
1、这个问题已知条件较多,题中的数量关系较复杂,列算式不易直接求出答案,这时,教师抓住时机,引导学生分组讨论,合作交流,帮助学生分析题意,分清已知量、未知量,寻找题中的相等关系。先让学生试做,然后抓住时机,亮出如下表格,见机讲解。
六(1)班六(2)班总数
参加人数
每人搬砖数68
共搬砖数400
2、通过上面所做的题目分析看出,有些问题利用算术方法解比较困难,而用方程解决比较简单。由上面题目分析也得出:这些都是只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程(板书课题:一元一次方程)
3、让学生根据一元一次方程的定义,举出一元一次方程的例子,师生对照定义进行分析评讲。
4、例2:根据下列问题,设未知数并列出方程:
让2位学生上黑板板演,其余科学生在下面做,然后,师生共同批改,批改时,对照一元一次方程的定义及列方程的步骤讨论讲解,并指出方程左右两边的意义。
(五)总结巩固、初步应用
1师生共同小结归纳
上面的分析过程可以表示如下:
设未知数找相等关系列方程
实际问题
一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
2、练习:
(1)环形跑道一周长,沿跑道跑多少周,可以跑?
(3)一个梯形的下底比上底多,高,面积是,求上底。
2、作业:课本73页第1、5题。
课题例1例1示意图
定义例2
列方程的分析过程归纳
根据生活经历,自编一道列方程应用题。
初中一元一次方程教案篇八
教学目标
基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想
方法:通过将实际问题转化成数学问题,培养学生的建模思想;
基本活动经验 体会解决实际问题的一般步骤及盈亏中的关系
教学重点
探索并掌握列一元一次方程解决实际问题的方法,
教学难点
找出已知量与未知量之间的关系及相等关系。
教具资料准备
教师准备:课件
学生准备:书、本
教 学 过 程
一、创设情景 引入新课
观察图片引课(见大屏幕)
二、探究
探究销售中的盈亏问题:
1、商品原价200元,九折出售,卖价是 元.
2、商品进价是30元,售价是50元,则利润
是 元.
2、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是 元.
3、某种品牌的`彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为 元.
4、某商品按定价的八折出售,售价是14.8元,则原定售价是 .
(学生总结公式)
熟悉各个量之间的联系 有助于熟悉利润、利润率售价进价之间联系
三、探究一
分析:售价=进价+利润
售价=(1+利润率)进价
亏?
(2)某文具店有两个进价不同的计算器都卖64元,
其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?
(3)某商场把进价为1980元的商品按标价的八折出售,仍
获利10%, 则该商品的标价为 元.
注:标价n/10=进(1+率)
(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的
价格,某种药品在涨价30%后,降价70%至a元,
则这种药品在20涨价前价格为 元.
四、小结
通过本节课的学习你有哪些收获?你还有哪些疑惑?
亏损还是盈利对比售价与进价的关系才能加以判断
小组研究解决提出质疑
优生展示讲解质疑
五、作业布置:
板书设计
一元一次方程的应用-----盈亏问题
相关的关系式: 例题
课后反思 售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
初中一元一次方程教案篇九
课本第110页111页活动1和活动3
1、知识与技能:
运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:
(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
3、情感态度与价值观:
通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。
1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。
2、难点:以上重点也是难点
3、关键:明确问题中的已知量与未知量间的关系,寻找等量关系。
投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。
一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:
这个人买了n件商品需要多少元?
教师活动:
(1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。
(2)教师对学生在发表解法时存在的问题加以指正。
学生活动:
(1)分组后对活动一的问题展开讨论,探究解决问题的方法。
(2)学生派代表上黑板板演,并发表解法。
解:2.2nn100
2.2100+2(n-100)n100
问题转换:
一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:
(1)这个人买这种商品多少件?
(2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?
教师活动:同上学生活动:同上
解:(1)n220
100+n220
(2)=0.48nn=0
100+=0.48nn=500
本活动课前布置学生做好活动前的准备工作:
1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。
2、分组:(4人一组)
开始做下面的实验:
(1)把直尺的中点放在支点上,使直尺左右平衡。
(2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?
(3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a和b,(不妨设较长的一边为a)
(4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。
(5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?
以上实验过程可以由学生填写在预先设计的记录表上
实验次数棋子数ab值a与b的关系
右左ab
第1次11
第2次12
第3次13
第4次14
第n次1n
根据记录下的a、b值,探索a与b的关系,由于目测可能有点误差。
根据实验得出a、b之间关系,猜想当第n次实验的a和b的关系如何?a=nb(学生实验得出学生代表发言)
如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的长为l,支点应在直尺的哪个位置?(提示:用一元一次方程解)
此问题由学生合作解决并派代表板演并讲解,教师加以指正。
解:设支点离n枚棋子的距离为x得:
x+nx=lx=答:略
1、课后了解实际生活中的类似活动问题,并举出几个例子。
2、课本,第110页活动2。
【本文地址:http://www.xuefen.com.cn/zuowen/3779668.html】