观察是发现细节、捕捉信息的重要方式。在写总结时,我们可以通过分析和归纳的方式来总结所要总结的内容。5、总结范文中的经验和教训对我们很有借鉴意义。
大数据的论文篇一
职责:
1、负责构建数据挖掘与数据分析体系,负责海量运营数据的分类汇总和分析研究;
3、负责数据管理团队的建设工作,有效领导数据分析与挖掘团队支持和推动业务发展;
4、协助完成业务关键目标指标制定、目标达成过程管理。
任职资格:
1、数学、统计学,计算机软件相关专业全日制本科及以上学历,至少4年相关工作经验;
4、对业务变化有敏锐的洞察力;能利用数据对于业务形态与商业模式有深入的理解;
5、数据敏感、善于创新、思维敏捷、精力充沛,沟通能力强,具备较强的团队合作精神并能够承受较大工作压力。
大数据的论文篇二
如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作――舍恩佰格的《大数据时代》。维克托・迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。
在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:
一、更多:不是随机样本,而是全体数据。
二、更杂:不是精确性,而是混杂性。
三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。
我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。
在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文・凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
大数据的论文篇三
随着信息技术的发展和智能设备的普及,大数据已经成为当今社会的热门话题。作为数据时代的核心,大数据不仅改变着人们的生活方式,也深刻影响着社会经济发展。在长时间的学习和实践中,我对大数据有了一些心得体会。本篇文章将从数据的来源、数据的处理、数据的应用、数据的挑战以及数据的未来五个方面,对大数据进行思考和总结。
首先,大数据的来源不仅包括了传统的企业内部数据,而且还包括了社交媒体、物联网、日志文件等非结构化和半结构化数据。与传统的数据相比,大数据具有体量大、速度快和多样性的特点,因此更加具有价值。大数据的产生与人们日常生活中的各个方面密不可分,例如我们在社交媒体上发布的照片、留言、评论等、在手机、电视、汽车等智能设备上的操作和行为也都产生了大量的数据。因此,我们要充分利用这些数据,挖掘出数据中的价值。
其次,对大数据的处理成为突破瓶颈之一。由于大数据的特点,传统的数据处理方法已经不能满足当前的需求。因此,人们开始采用云计算、分布式存储和分布式计算等新技术。云计算可以提供强大的计算和存储能力,分布式存储可以方便地处理大规模数据的存储,分布式计算可以加速大规模数据的处理。同时,机器学习和深度学习等算法的出现,为数据处理提供了新的思路。通过建立合适的模型和算法,可以更好地处理大数据,并从中发现隐藏的规律和关联。
第三,大数据的应用已经渗透到各个领域。在商业领域,大数据可以帮助企业更好地了解客户需求、优化产品设计、优化营销策略等,从而提高企业的竞争力。在医疗领域,大数据可以帮助医生更准确地诊断疾病、制定个性化治疗方案。在城市管理中,大数据可以帮助政府更好地了解城市运行的状态,制定科学合理的城市规划和交通管理。在交通领域,大数据可以帮助交通公司更好地安排班车和线路,提高乘客的出行效率。
然而,大数据也面临着一些挑战。首先是数据安全和隐私问题。大数据的应用离不开个人信息的采集和存储,而这又与用户的隐私密切相关。因此,我们需要建立合理的数据保护机制,使用户数据安全可控。其次是数据质量问题。大数据的质量直接影响数据分析和决策的准确性和有效性。因此,我们需要加强数据质量的管理和控制。此外,大数据的运营和维护也需要相应的技术和人才支持,这对于很多企业来说是一个挑战。
最后,对于大数据的未来,我非常看好。随着技术的进步和应用场景的拓展,大数据将会有更广泛的应用。例如在智能家居领域,大数据可以帮助家庭更智能地控制和管理各类设备。在教育领域,大数据可以帮助教育机构更好地了解学生的学习情况和学习模式,从而制定更适合的教学方案。在环保领域,大数据可以帮助我们更好地了解环境污染的情况,从而制定合理的治理方案。
总之,大数据已经成为时代的潮流,对于社会发展和个人生活都起到了重要的推动作用。对于大数据的深入思考和理解,有助于我们更好地把握和利用数据,发现新的需求和机遇。希望未来大数据的应用能够更好地服务于人类的发展和进步。
大数据的论文篇四
随着信息时代的到来,人们生活中的各个方面都开始涌现出海量的数据。这些大数据以惊人的速度增长,使得人们需要运用更加高效的方法来处理和分析这些数据,从而获得有价值的信息和洞察。在我与大数据打交道的过程中,我深深领悟到了大数据的重要性和它对我们生活的影响力。在这篇文章中,我将分享我对大数据的心得体会。
首先,大数据为我们提供了更全面和准确的信息。在过去,我们往往只能凭经验和感觉来判断事物的发展趋势和决策的方向。然而,随着大数据的普及,我们可以通过收集、分析和挖掘大量的数据,了解事物的真相和本质。比如,在市场营销领域,大数据可以帮助企业分析用户购买行为、消费偏好和市场趋势,从而制定更加精准和有效的推广策略。在医疗健康领域,大数据可以帮助医生分析患者的病例和治疗效果,为患者提供更加个性化和有效的治疗方案。通过大数据,我们可以更加科学地进行决策和规划,使我们的行动更加明确和高效。
其次,大数据为我们提供了更深入和全面的洞察。传统的数据处理方法往往只能分析孤立的数据点,而难以发现数据之间的联系和规律。然而,大数据具有强大的处理能力,可以将各个领域的数据进行整合和分析,从而帮助我们发现隐藏在庞大数据中的规律和趋势。比如,交通领域的大数据可以帮助我们了解城市交通状况和交通拥堵的原因,从而优化交通管理和规划。而在科学研究领域,大数据可以帮助科学家们分析海量的实验数据,发现科学事实和新的知识。因此,只有运用大数据的方法,我们才能够获取到更加准确、全面和系统的洞察,为我们的工作和生活带来更大的价值。
第三,大数据为企业和组织提供了更广阔的发展空间。在信息时代,数据已经成为企业竞争的重要资源。通过收集和分析大数据,企业可以了解市场需求、优化产品和服务,并制定合适的商业策略。比如,Amazon通过分析用户购买记录和偏好,为用户推荐个性化的商品,提高销售效率和用户满意度。而在政府组织中,大数据可以帮助政府进行城市规划、资源分配和社会管理,提高行政效率和服务质量。此外,大数据还为创新提供了更多的可能性。通过挖掘大数据中的信息和资源,创业者可以发现新的商业机会和创新方向,为社会的发展带来新的动力和活力。
第四,大数据也带来了一系列的挑战和问题。首先,大数据的处理和分析需要高度的技术和运算能力。大数据往往以海量的形式存在,数据存储、处理和分析需要庞大的计算资源和算法模型。其次,大数据的安全和隐私问题也引起了人们的关注。随着大数据的应用,个人和机构的隐私面临着更大的风险,需要制定更加完善的数据保护和隐私政策。此外,大数据的分析和使用也需要遵守法律和伦理的规范,避免滥用和侵犯他人的权益。
综上所述,大数据对我们生活的影响力是巨大的。通过大数据的处理和分析,我们可以获得更全面、准确和深入的信息和洞察。大数据为企业和组织提供了更广阔的发展空间,也为创新提供了更多的可能性。然而,大数据的应用也面临着一系列的挑战和问题。因此,我们需要积极应对这些挑战,保障大数据的安全、隐私和合法性,从而更好地利用大数据的力量,为我们的社会和生活带来更大的进步和发展。
大数据的论文篇五
1桥梁工程的大数据
在桥梁工程中,数据按时间上的划分可以分为两类,静态数据与动态数据。静态数据主要指桥梁的相关信息资料库与科学实验产生的数据。信息资料库是一种相对静态数据,因为这些数据资源每过一段时间将更新一次。各国家和各地方政府部门基本建立了桥梁工程资料库及相关系统,列举出主要国家和地方政府的桥梁管理系统,包括建成时间、系统功能、与建设部门等。除政府部门外,各科研单位也在完善各自的桥梁统计分析系统,系统中主要包括桥梁的桥型、跨径、材料、建成时间等基本信息,还包括桥梁的病害、桥梁状况评定等相关内容。桥梁的科学试验数据主要来源于各大高校和科研单位科学研究中的模型试验、振动台试验、风动实验、桥梁的荷载试验等产生的数据。这类数据的有效分析处理形成各类科学研究成果,但是此类数据的开放程度低,造成数据资源的极大浪费。桥梁的动态数据主要来自于桥梁的施工监控和成桥运营阶段健康监测系统,此类数据由安装在桥梁上的实时监测传感器获得,包括位移传感器、速度传感器、加速度传感器、应变计、温度计、风速仪、gps等。统计了国内部分桥梁健康监测系统的传感器数量以及安装时间。各类传感器配以相关的采集系统来获得数据信息,再通过相关软件分析、处理,从而掌握桥梁的实时健康状况,对桥梁的状态进行评估与预测。整个桥梁健康监测体系。
2开发桥梁工程领域大数据资源意义
利用桥梁的静态数据库,可以了解桥梁的基本信息,为全国的桥梁统计、普查与管理提供信息资源。科研数据的开放有助于学术界的交流、创新,取得更为丰富的科研成果。桥梁动态数据包括施工监控数据与成桥运营阶段的监测数据,充分利用与挖掘大数据资源,可以提高桥梁的施工质量、加快施工进度,提前预测和解决施工过程中可能出现的问题,减少质量事故和经济损失。成桥运营阶段的监测数据主要为桥梁的健康状况评估提供依据,掌握桥梁所处的状态,分析、处理数据资源,提高预测、分析、解决问题的'能力。可为同类桥梁的施工管理与养护等,提供宝贵经验。同时大数据资源的开放、共享,有助于节约国家资金和社会资源。
3存在问题及解决方法
(1)最先遇到的也是最棘手的问题是数据的去冗、去噪,从海量数据中挖掘大数据资源价值。目前,所列一座特大桥上各类传感器每天采集的数据达到几个gb到几十gb,甚至上百gb,如此海量的数据如何去处理,有效剔除无用的信息,找寻剩余有用的信息,从而产生新的价值、新的资源。这也是在大数据时代有效利用大数据资源要解决的首要问题。解决这一问题的主要途径是编译相关的去冗、去噪的智能分析软件,同时可以利用云计算、云分析、云管理等方法来提高解决这一问题的效率,使大数据变为有用数据,做到真正智能化分析。
(2)现在各政府部门和科研单位,都在做自己的桥梁信息库以及监测研发数据库等,而且大多数数据库都是相类似、重复的。这样造成资源的极大浪费,包括劳动力、资金等。解决这一问题的有效途径是加强政府部门、科研单位内部以及之间的相互合作,开放和共享数据资源,这也是大数据时代的必然趋势。各部门和科研单位可以有步骤、分阶段地开放共享各自所拥有的数据资源,不论是采用付费或免费的方式。
(3)由于大数据具有“4v”等特点,在大数据研究的初期阶段,大数据的价值还未充分体现时,要储存、分析、利用大数据资源,需有软件、硬件等基础设施的投入,国家和科研单位应提供专项资金的支持,同时国家可制定相关鼓励支持政策。
(4)在大数据时代成熟以后,应建立相关法规,规范和保护数据的开发利用,制订相关统一标准,提高数据的使用效率。
4结语
本文首次在桥梁工程领域引入大数据概念,提倡用大数据的观察事物的方法和思维方式来分析、处理、挖掘早已在桥梁工程中应用的大数据资源。文章首先介绍大数据的概念及特点,和在桥梁工程领域产生的静态与动态数据的来源。其次、说明充分开发桥梁工程领域大数据资源的重要意义。最后,就目前在桥梁工程应用中存在的问题提出相关解决途径。
大数据的论文篇六
大数据或海量数据是指所涉及的海量数据,无法通过当前主流软件工具检索、管理、处理和整理成更活跃的信息,帮助企业在合理的时间内做出商业决策。以下是为大家整理的关于,欢迎品鉴!
摘要:近年来由于计算器技术和信息产业的快速发展,促使了相关的数据量也产生了极大的增长。然而面对这些庞大且杂乱的多维数据集,我们无法快速且有效的找到我们所需要的信息。因此我们必须要使用数据挖掘技术以从数据集中去提取我们所需要的资料,并且进行分析与处理。在本中,将介绍大数据挖掘分析软件rapidminer,并且与其他旧有的数据挖掘分析软件来做一个功能性的比较。
关键词:信息;rapi;dminer;大数据;挖掘;应用
0引言
透过线性回归、类神经网络、判定树和支持向量机,说明应用rapidminer进行大数据挖掘分析的运作流程,并介绍rapidminer的操作接口跟分析方法。本篇论文采用rapidminer的原因,主要是因为它拥有非常便捷的图形化接口,而且使用者在操作上不需要再额外去学习其它的程序语法,只需要透过选取组件以及设定参数的方式就可以完成。而且在分析结果的显示上也非常的多样化,可以让使用者自行选择要观看哪一种图形显示分析的结果。
1数据探勘流程探讨
1.1资料清除
是过滤掉数据当中的那些噪声和无法判别的资料跟不一致的数据,保留可用的且有效的数据。
1.2数据的整合
不一定都来自相同的一个数据库,所以必须做数据的整合,将来自不同数据库的数据整合处理完后处理在我们的数据仓储。
1.3数据选择
在数据探勘中是一个相当重要的环节,选到有用的数据可以提高分析预测的准确度,但是选到无用的数据却可能会拉低分析预测的准确度,所以在做数据的选择时必须先对这些数据有一定的认识,才能做出正确的选择。
1.4数据转换
由于人类和计算机的沟通的语言不同,所以当我们要让计算机来处理事情时,必须先将手头的数据转换成计算机可以识别的资料格式,或合并成数据探勘所需的数据形式来让计算机判读,像是执行汇总与聚合。
1.5数据探勘引擎
数据探勘系统在数据探勘中算是非常重要的一个环节,因为它包含了探勘工作所需要的功能,像是特征化、相关系数与相互关系分析、判别、预测、群组分析、分群、离异值分析与演化分析等等。
1.6样式评估
样式评估根据某些有趣度量,来辨认代表知识的有趣样式,也可以说是评估数据跟数据之间的关联性是否是有用的、重要的、是否正确。
1.7用户接口
这个模块让用户可以与数据探勘系统进行沟通,他允许使用者透过设定数据探勘查询或工作与系统进行互动、提供讯息来帮助搜寻,对暂时数据探勘结果进行探索性数据探勘。
2数据探勘工具
2.1rapidminer
rapidminer开源式框架,支持各种类型的数据挖掘像是文本、网络、图像或是链接开放式的数据挖掘[1]。透过它复杂的图形用户接口,数据挖掘的過程可以更加的简洁且快速,直观地实现和执行,并且不需要额外的程序语言编辑技术。
2.2weka
weka用于数据挖掘任务的算法的集合,算法可以直接应用在数据集上,也可以从自己设计的jave代码调用[2]。weka它包含了数据的预处理、分类、回归、聚类、关联规则和可视化的工具也就是图形接口,weka可以算是最古老,且最成功的开元数据挖掘库和软件,随后被集成为rapidminer和r的扩充软件,也因为rapidminer和r的出现,它们提供了使用者更加舒适且便利的使用环境,使得weka的用户开始大幅的下降。
2.3knime
knime图形接口的自由开源信息汇整系统,它具有杰出的数据统合能力,并且可以运用在数据查询(datamining)、数据处理、数据分析、流程绘制以及流程规划与管理(workflow)等等各方面。
3数据探勘工具比较
rapidminer:独立平台;使用者:学习者、高级用户、专业用户、企业用户;用户接口:主要是透过图形接口来做流程的设计,也可以同时开启多个窗口来做操作;功能:大于500种,可透过扩展来新增额外的功能,且可扩展weka和r作为它的扩充元件,并进行协同工作;操作接口:简洁易懂的操作接口,不需要额外的学习程序语言的编辑能力,使用者只需要透过拉取所需的原件并且将其连接起来即可使用,使用者可自由配置操作接口;支持的输入格式:csv、excel、xml、access、aml、arff、xrff、spss、sasdatabases、jdbc....;支持输出模型格式:模型可以导出为不同的档案格式,像是bmp、jpg、pdf、postscript、raw、xml等各种文件格式。
weka:独立开发平台;使用者:学习者、一般用户;用户接口:图形接口;功能:约500种;操作接口:有四种模式可供使用者选择使用,每种模式都各有其优缺点,使用者需挑选最合适的使用模式使用;支持的输入格式:arff、csv、c4.5、bsi、localfile、urls、jdbc..;支持输出模型格式:不支援。
knime:java平台;使用者:学习者、一般用户;用户接口:可在同一时间开启四个不同的视窗,用来做不同的功能;功能:约100种;操作接口:简洁易懂的使用接口,可以让使用者很容易得学会,也可以自由配置操作接口;支持的输入格式:arff,csv,pmml,localfiles,urls、jdbc..;支持输出模型格式:可以将档案汇出成压缩文件(zip),只有从knime导出的模型才可以再次汇入到knime中。
4结语
现今是个信息科技的时代,几乎所有事情都是可以用数字和数据来解释的,每件事情的发生都会有它的前因后果,所以我们可以从这些数据当中找出这些因果关系,并且加以利用就可以预测出我们所要的结果,单单只有一大堆的数据是没用的,需要使用rapidminer这个数据挖掘分析软件,来从这些杂乱的数据库中萃取出我们所需要的信息,也就是从数据进行知识发掘,并且找出他们的相对应关系为我们使用。
参考文献
[1]胡可云.数据挖掘理论与应用[m].清华大学出版社,2008.
摘要:我国大数据产业目前已进入快速推进阶段。对于企业来说,大数据是一项极其重要的战略资产。文章从大数据的起源及基本特征出发,分析大数据给企业财务信息管理带来的影响,并提出大数据时代加强企业财务信息管理的有效策略。
关键词:大数据;财务信息管理
伴随互联网+、云计算、物联网、社交网络平台、传感技术等新兴技术与服务的出现,人类社会的数据种类和规模正以前所未有的速度呈爆发式增长和累积。据市场调研机构idc预计,未来全球数据总量年增长率将维持在50%左右,到2020年,全球数据总量将达到40zb,其中我国数据量将达到8.6zb,是2013年的10倍。海量数据的产生已经完全不受时间、地点的限制,其规模效应给数据存储、管理以及数据分析带来了极大的挑战。
大数据产生经历了被动-主动-自动三个发展阶段。第一阶段是数据库技术的出现。数据库技术被广泛应用于运营系统,数据伴随着系统的运转产生并被记录下来。这种数据的产生是被动的;第二阶段是互联网技术的诞生。新型社交平台的开发与各类便携式移动设备的使用,给人们更多的表达个人想法的途径与机会,这个阶段数据的产生方式是主动的;第三阶段是感知式系统的广泛应用。装配微型传感器的设备被广泛布置于社会的各个角落,这些设备源源不断记录下大量的新数据。这种数据的产生是自动的。这些被动-主动-自动记录与存储的数据共同构成了大数据的数据源。
关于大数据的特征,在国外大数据研究先河之作的《大数据时代:生活、工作与思维的大变革》一书中,作者指出,大数据是以4v为基本特征的数据集,即规模性(volume)、多样性(variety)、高速性(velocity)、价值性(value)。而ibm认为,大数据还必然具有真实性(veracity)。维基百科则通过简单明了的描述,对大数据进行定义:大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。2017年国际电信联盟首次以大数据作为世界电信日主题,提出了“发展大数据,扩大影响力”。
企业财务信息管理起源于16世纪初的西方资本主义萌芽时期,早期并没有形成专业、独立的财务信息管理系统。企业的业务单一,信息资料也比较笼统、简单。随着20世纪初期工业革命的成功,公司制企业迅速发展并成为主要的企业组织形式,财务管理和财务信息的重要性日益突出,财务管理理论、制度、法规逐步完善。政策法规对财务信息有了规范性的要求,甚至对财务信息的披露、存档时间、保存形式有了详细的规定。到20世纪90年代,微型计算机应用逐渐普及,财务信息由传统手工编制过渡到手工+计算机辅助编制。随着计算机应用软件技术的进步,专业性的财务软件逐步代替了手工记账方式,进入财务电算化时代。当前,随着互联网和云存储、指纹加密、人脸识别等信息技术的兴起,云算盘、精斗云、云账房等新型财信息管理系统已开始得到广泛应用。
在企业财务信息管理中,数据来源的真实、有效、可验证性,数据采集的及时性、数据与本企业经营决策的相关性,数据的可计量性等是企业做出正确经营决策和投资参照的重要基础,为明确企业财务现状和运营前景提供依据;先进设备与技术的应用,是企业财务信息管理的有力支撑;而信息管理制度及人才队伍的建设,更是企业财务信息管理的关键所在。在大数据时代,财务数据,设备与技术,制度与人才多项因素紧密相结合,对于促进企业快速、良性发展有着重要的意义。
1、财务信息来源增加
在计划经济时代,财务信息最主要的来源是各项经营的收支,并以货币计量方式表达。在大数据时代,除了传统的纸质或电子形式存在的文字、表格,电子设备、传感器、刷卡机、收款机、网站浏览点击行为、电子地图、社交网络媒体互动等设施与平台记录下来的数据与信息都可成为影响企业经营决策的信息源。
2、财务信息类型增多
传统财务信息管理主要是以货币形式出现的跟收入与支出相关的数据,信息类型单一。而大数据的基本特征之一是信息类型繁多,涵盖了文本、音频、图片、视频、模拟信号等。信息整合难度加大。
3、财务管理职能前置
传统的财务管理是事后管理,且局限于对现有数据进行简单的统计分析、查询。大数据的应用能够对企业经营情况进行实时分析和及时预测,提供更具时效性、指标多样化、更贴近经营管理需求的财务管理动态分析报告。财务管理的职能前置到市场预测、产品设计、供应链建设等价值规划阶段,财务体系由核算型向价值型转变。
1、提高财务信息质量
大数据时代,海量数据的价值性呈现低密度,高附加值特点。单个数据看起来价值很低,但同类型的数据规模增加到一定数量,就会有很高的商业价值,对企业经营决策的指导力越强。当前,财务信息来源可分为二个方面:一是企业经营过程中产生的信息,这类信息属于内部数据。除日常收支外,还应括用户注册信息、浏览记录、定位记录等;也包括构成产品价值链的各个环节产生的数据,比如研发记录、生产作业记录、采购过程动态监控记录、物资出入库数据、销售业务数据等;还包括人事、战略、公共策略、专业知识库、企业文化等非结构化信息数据。二是本行业及跨行业相关数据信息,这类信息属于外部数据。外部数据应注重从目标人群、行业、大环境等方面收集。伴随着各种随身设备、物联网、移动互联网等技术的发展,人成为了移动互联网的核心网络节点,通过用户点击行为、电子地图、社交网络行为等数据,可以对目标人群进行有效分析。行业数据既包括本行业的产品种类、销售状况、研发趋势、竞争对手情况等,还包括跨行业的关联性信息,以全面性提高数据的准确度和价值。大环境指所处社会的经济、政治、法律等环境。国务院《促进大数据发展行动纲要》提出要稳步推动公共数据资源开放,这将成为重要的外部数据来源。
2、强化财务信息整合
大数据搜集,重点不在于占有,而在于利用。而要利用好数量庞大,来源广泛,格式多样的财务信息数据,就必须对其进行实时整合,存储与管理。其方法主要是分类,聚类,存储。分类是找出大数据中的一类数据对象的共同点,通过分类模型将其划分为不同的类。同一类数据由于具有不同特征,可以被分到多个类别中去。聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大。存储则是以根据财务管理需要将大数据划分成分布式存储模块,如生产计划模块、销售管理模块、会计核算模块、资产管理模块、业绩评价模块和企业间关系模块等,以便数据管理和使用。
参考文献
[2]东梅.论财会信息的现代化管理[j].北方经贸,2013(2)
[3]何冰.大数据会计与财务信息相关性研究[j].会计之友,2017(7)
[4]程平.云會计环境下人、数据和系统对会计信息质量的影响[j].重庆理工大学学报(社会科学版),2016(7)
精准扶贫是政府提出的扶贫政策,其目的在于帮助贫困地区脱贫。精准扶贫中的扶贫资金,不仅涉及到政府管理部门,还涉及到社会各界及贫困地区经济发展,所以全面有效实施精准扶贫显得非常重。资料显示,大数据的应用能够使精准扶贫资金效益得到最大发挥,能够完善精准扶贫资金管理,使精准扶贫实现“真扶贫”。对此,笔者根据自己对“精准扶贫”及“大数据”的了解,分析了大数据助力精准扶贫的原理、问题及措施等。
“大数据”是社会经济及科学技术发展的产物,已经被应用于人们的生产及生活,对各大领域发展都起到了积极的推动作用。大数据是基于信息技术基础上对数据进行分析及整合的科学技术,其核心在于利用数据对信息进行分类、管理、整合、分析及处理,具有数据体量大、种类多、数据处理速度快及价值密度低等特点。
大数据助力精准扶贫时需要应用到信息技术,以获取准确的扶贫信息及数据;利用大数据能够对复杂的扶贫数据及信息进行分类、调整及分析,以了解多种影响因素,为精准扶贫的实施提供依据;当大数据被应用到精准扶贫时,需要相关部门对应用时产生的各种信息进行收录,并利用互联网进行整合、分析、挑选、筛查及汇总,以便于扶贫工作者利用这些数据对扶贫工作进行现实状况分析,最后找到有效的扶贫举措,提高扶贫决策的科学性及合理性,使精准扶贫得到实现。
第一,在大数据支持下,遥感技术、媒体信息技术、宽带网络技术等都能够应用到精准扶贫工作中,如可以用这些技术调查和分析扶贫产业、贫困人口和周边环境等数据。第二,利用大数据能够实现对农村基础设施与地理环境、交通等信息整合,从而全面了解贫困对象基本信息及生活需求等。第三,在大数据支持下能够了解贫困地区的人口及经济水平等信息,为精准扶贫工作提供重要依据。
第一,对贫困群体的精准识别基础工作不扎实,导致一些非贫困群体享受到帮扶待遇。第二,精准扶贫管理部门及相关工作者的职责界定不清晰,且资金审批、拨付等工作手续繁多,降低了扶贫工作效率。第三,没有按照国家相关规定及实际需要管理扶贫资金,导致部分扶贫资金被骗取和套取。
(一)对扶贫对象进行精准定位。第一,利用大数据下的媒体信息技术、通信技术及计算机技术等对贫困地区的人口进行调查,并确定符合扶贫要求的人群。第二,利用计算机信息技术对贫困对象进行建档立卡,并构建贫困人口的基本信息库,信息录入包括扶贫对象的年龄、工作、性别、年收入及家庭人口数量等。第三,信息录入后还需要进行基层走访、信息核实汇总,以保证扶贫对象信息的真实性,减少非贫困群体骗取和套取扶贫资金。
(二)利用大数据对扶贫工作进行动态跟踪管理。第一,利用大数据下的信息技术、遥感技术及媒体信息技术等,构建动态识别系统,以实现对扶贫对象的高效管理,同时还能够收集和分析相关数据,从而优化贫困户识别系统,提高精准扶贫工作质量及效率。第二,利用计算机信息技术及通信技术等,构建扶贫对象资源数据库,以提高识别系统准确性及扶贫对象信息数据完整性。第三,进行动态管理时,不仅需要对扶贫对象的基本信息进行动态监察,还需要管理扶贫资金流向和追踪扶贫资金使用方向等,以保证扶贫资金切实应用到扶贫对象身上。第四,通过实时更新扶贫对象信息系统,了解扶贫对象是否已经脱贫、是否进入帮扶范围等动态,以保证精准扶贫得到全面贯彻和实施。
(三)利用“大数据”预测贫困需求。第一,利用大数据下的数学方法来定位扶贫方向,并分析扶贫对象实际需求。第二,利用大数据对扶贫对象的基本信息进行分析,并利用数学法计算贫困事情发生率,以了解扶贫对象的贫困需求,从而制定具有针对性的扶贫对策。第三,利用大数据中的遥感技术、媒体信息技术等构建扶贫资金管理系统及监督系统,以实时了解扶贫资金的取向及利用率,以保证扶贫资金能够真的解决扶贫对象的实际问题,减少资金浪费,最终提高精准扶贫工作质量及效率。另外,在精准扶贫中还需要注意以下两点:第一,实行脱贫工作责任制,保证扶贫工作执行力。第二,积极转变贫困人口的思想,引导贫困人口通过自身努力实现小康生活。
总之,精准扶贫是针对我国贫困地区提出的扶贫政策,已经在很多贫困地区得到贯彻,而大数据则能够提高精准扶贫工作质量及效率,使贫困地区脱贫速度加快,加快我国小康社会发展。基于此,上文先简单概述了大数据,然后分析了大数据助力精准扶贫的原理以及对精准扶贫的技术支持,并探讨了精准扶贫中存在的问题,最后分析了大数据有效助力精准扶贫的措施。
【参考文献】
[1]解静静.大数据助力精准扶贫问题研究[j].江西农业,2019(14):131+135.
[3]李秀玲.大数据助力精准扶贫[j].中国国际财经(中英文),2018(07):197.
大数据的论文篇七
3月11日下午两节课后,我校全体教师和受邀而来的金南学区各友好学校的领导及教师汇聚于多媒体教室,共同分享、交流《大数据时代》读后感。
老师们从:何谓大数据;立足国情对大数据进行探讨;大数据在教育教学中的主要应用等几个方面畅谈了自己的感悟。
张萌老师说:大数据体量庞大、结构复杂、是产生巨大价值的数据集合。大数据这种方法在中国的国情下需要以更加科学、合适的方式进行实践,不可生搬硬套。
董译雯老师说:在你我感叹《大数据时代》里深植于美国民众血液中的自由、民主、严谨的价值观的同时,可否想过中国教育体制下的孩子们身上还残留多少独立与自我意识?作为典型的八零后,我们这一代人身上最缺失的便是独立思考能力。但愿,我的学生哪怕是因为我所做的一点点努力而开始思考“我”这个字的含义,足矣!
张红杰老师说:很感谢校长给我们推荐了《大数据时代》这本书。在教学工作中,应该有大数据意识,创新意识。学习一些专业的教学统计法、数据分析法,从中发现一些教育现象,并采取相应的策略。让我们的教育教学工作少一些随意和盲目,多一份严谨与科学。
白媛媛老师通过文中的三个事例,结合教学实际,谈了自己教学中对数据使用的价值;结合自己的工作,谈了如何实现工作的最高境界。
交流活动尾声,身为阅读《大数据时代》的倡议者、发起者、以及忠实的读者韩校长幽默风趣的同大家分享了他读后的感悟:我们心中要装着学校,因为我们个人的命运依赖群体的命运;工作要追求精细化,不能做胡适书中的“差不多”先生;尊重数据,拥有数据意识,建立数据团队!
此次活动从寒假期间倡导读《大数据时代》一书,到开学伊始的分组沙龙,再到今日的阅读共享,现已圆满告一段落。相信此次活动定会增强我校全体教师的数据意识,掌握大数据,运用大智慧助推我校的教育教学上一个新的台阶!
大数据的论文篇八
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革――商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道出现的h1n1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!
在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!
大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。
大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
大数据的论文篇九
今年,火车票预售期由春节前60天缩短至30天。昨天下午,去哪儿网通过对60多万条飞机航线、50余万条铁路客运线进行大数据计算,对外发布了《春运大交通数据报告》,为回家旅客提供参考。报告显示,20春运期间,预计铁路车票中高铁占比将超4成;航班出发最集中的日期是年1月24日,十大难买票航线中,北京占了一半。同时“怡起回家”福利通道已开启,将为旅客提供最高金额达100元的火车票减免优惠券等多项福利。
火车票
超四成人将坐高铁
铁路向来是春运客运量最高的交通工具,据去哪儿网大数据预测,2017年12月15日将进入旅客春运抢票高峰,此轮去程购票高峰将和去年一样,一直持续到春节前结束。
今年春运,铁路最热门的出发地集中在北京、上海、成都、重庆和杭州。这些城市多属于超一线和新一线城市,外来人口集中,也是多条铁路线路的起始地。一个显著的变化是,购买快速铁路车票的用户比例不断增加,选择乘坐高铁的人数占比达到了41.5%,选择乘坐城际铁路的人群比例也达到了10.3%,整体超过了总数的一半。乘坐上海出发的高铁线路人数最多,杭州、长沙、北京、广州的票量紧随其后。
飞机票
北京飞佳木斯特难买
2017年春运出发最集中的日期是2017年1月24日,已经进入了乘飞机回家旅客的人数峰值期,全国重要的机场将进入到繁忙状态,返程高峰则从大年初六即2017年2月2日开始。
北京至成都、深圳至重庆、上海至哈尔滨、北京至三亚、广州至重庆、深圳至成都、成都至北京、重庆至广州、北京至哈尔滨、上海至成都,这十条是往年最热门的空中回家路。据去哪儿网大数据统计,北京至佳木斯的航线,在众多热门航线中并不起眼,但订票时间却比其他航线早很多,平均会提前36天。而从深圳回海口更早,一般提前43天,堪称最难买航线。记者注意到,在“春运期间十大最难买线路”中,北京起飞地就占了一半。
接送站
4点到11点为乘车高峰
春运期间,95%的旅客会有行李箱、背包并携带各种礼品,专车接送机/站成为热门出行工具。北京、成都、深圳、上海、三亚、广州、昆明、西安、哈尔滨、厦门等10个城市成为去哪儿接送机使用率最高的城市。
在接送机/站的用户中,25至35岁年龄段人群最高,占比48%,35至45岁占比也超过两成。在预约时间上看,男性一般提前在出发前3.5天至4.1天预订接送机服务;女性用户明显准备更加充分,其预约时间在4.1天至5.6天。
从出行时段上看,4点至11点为旅客乘车去机场、火车站高峰,其中5至6点出发人群最高,高达6.9%;10至11点又会出现小的高峰,出行占比为5.1%。
发福利
买火车票最高减100元
由华润怡宝饮料(中国)有限公司和去哪儿网发起的2017“怡起回家”春节活动于昨天正式启动。即日起至2017年2月11日,旅客打开去哪儿网app找到“怡起回家”专题可以参加红包抽奖,覆盖去哪儿网旗下机票、火车票、汽车票、接送机租车、度假、门票、酒店等全线产品。
其中,活动力度最大的是乘坐比例最高的“火车票”,活动为旅客提供了最高金额达100元的火车票减免优惠券,并可直接用于购票抵扣,还有千张“1元机票”秒杀、4000份车车代金券、4万份出游保险等多种优惠。过年期间,旅客还将享受到国内外12条免费度假线路、3万份怡宝定制红包和1万份出游保险的额外奖项。
相关
北京至昆明高铁首发
记者从北京铁路局获悉,自2017年1月5日起,北京将首开昆明、福田和绍兴方向高铁列车,北京西至昆明南最快旅行时间较现行直达特快压缩约21小时,实现“朝发夕至”。
铁路部门提示,为了配合此次运行图和下一步春运运行图的调整,12月30日以后的火车票预售期调整为30天。按此计算,今日最远可以买到2017年1月4日的火车票,有出行需求的旅客,可登录中国铁路客户服务中心网站或通过车站窗口、火车票代售处、拨打北京铁路局订票电话(95105105)购买车票。
列车调整
首开北京西至昆明南g403/4次、g405/6次高铁列车2对;
首开北京西至福田高铁列车2对,g71/2次、g79/80次;
首开北京南至绍兴北高铁列车1对,g39/40次;
增加1对北京南至商丘g1567/8次高铁列车;
延长3对快速列车运行区段:北京西至桂林北k21/2次延长至南宁;保定至南京k849/52/49、k850/1/0次延长至上海;天津至大同k608/5次延长至朔州;大同至秦皇岛2604/1次改为朔州至秦皇岛。
大数据的论文篇十
一、12月15日进入火车票抢票高峰高铁占比超4成
众所周知,铁路向来是春运客运量最高的交通工具。相比去年,由于春运火车票只能提前30天购买,火车票抢票形势更加严峻。
如图所示,2016年春节提前一个月,旅客进入购票高峰。去哪儿网大数据预测,春节将至,2016年12月15日将进入旅客春运抢票高峰,此轮去程购票高峰将和去年一样,一直持续到春节前结束。
2016年春运,互联网售票量占总售票量的64.6%,占比超过一半,其中手机app发售车票1.5亿张,售票总量比例由去年的15.7%上升至39%。去哪儿网预测,生长在互联网时代的90后将是20春运的主力军。
在火车用户画像中,选择乘坐火车回家的男女比例分别为52.5%、47.5%,其中90后人群占比高达43%,80后人群为27.8%,两者占比超过70%,成为绝对的中坚力量。
近年春运,铁路最热门的出发地集中在北京、上海、成都、重庆和杭州。这些城市多属于超一线和新一线城市,外来人口集中,也是多条铁路线路的起始地。
一个显著的变化是,购买快速铁路车票的用户比例不断增加,选择乘坐高铁的人数占比达到了41.5%,选择乘坐城际铁路的'人群比例也达到了10.3%,整体超过了总数的一半。
去哪儿网大数据预测显示,乘坐上海出发的高铁线路人数最多,杭州、长沙、北京、广州的票量紧随其后。
与热门出发地相对应的,重庆、上海、杭州、成都、郑州是往年国内最热门的目的地。这些城市周边铁路、公路、航空线路密集,以此作为中转目的地的旅客也不在少数,抢票难度成几何倍数增加。
非高铁、城际等高速列车的出发地,北京最为热门。不过与高速列车热门出发地不同,紧随其后的重庆、昆明、西安、郑州出发的票量与北京之间相差并不多。
二、最难买航线已经进入抢票模式多数航班恢复全价
从2016年春运的大数据看,预定高峰期出现在距离春节20天,这一天的预订量创出近期以来的新高,与上个月同期环比增长100%。
大数据显示,2017年春运出发最集中的日期是2017年1月24日,已经进入了乘飞机回家旅客的人数峰值期,全国重要的机场将进入到繁忙状态。返程高峰则从大年初六即2017年2月2日开始。
三、85后成机票预订主力军天秤座成“空中飞人
移动互联网时代来临,网上购票已经成为消费者最便捷的预订方式。来自去哪儿网大数据显示,选择乘坐飞机回家的旅客男女比例相近,天秤座在12星座中乘坐比例为9.8%,力压群雄。
家乡越北,越会提前购买回家的机票。去哪儿网机票专家分析,排名前十名的航线,以大机场往小机场飞为主,每天的航班数多在30班以内,是北京至广州这种热门航线航班数的三分之一。
根据去哪儿网大数据统计,北京至佳木斯的航线,在众多热门航线中并不起眼,但订票时间却比其他航线早得多,堪称最难买航线。在去哪儿网平台预订过年前三天回家的机票中,北京至佳木斯这条航线,用户平均会提前36天。从深圳回海口更早,一般提前43天。
四、十条热门空中回家路出炉平均飞行1416公里
从热门航线看,北京-成都、深圳-重庆、上海-哈尔滨、北京-三亚、广州-重庆、深圳-成都、成都-北京、重庆-广州、北京-哈尔滨、上海-成都,这十条是往年最热门的空中回家路。
去哪儿网统计了往年春运返乡票量最高的50条航线,发现追逐梦想的人们,选择求业、求学城市距离家乡的平均飞行距离是1416.2公里,这几乎是从深圳到西安的里程。
通过去哪儿网平台订票的用户,大多选择在早上7点就坐上飞机,按照平均离家距离1416公里来计算,飞行时间近3个小时,98.8%的用户选择乘坐经济舱。
五、行李多礼物重专车成热门接送工具
春运期间,95%的旅客会有行李箱、背包以及各种礼品出行,为了能够快速到达机场、火车站,专车接送机/站成为热门出行工具。
去哪儿大数据显示,北京、成都、深圳、上海、三亚、广州、昆明、西安、哈尔滨、厦门等10个城市成为去哪儿接送机使用率最高的城市。
其中,在预约时间上看,男性一般提前在出发前3.5天-4.1天预订接送机服务;女性用户明显准备更加充分,其预约时间在4.1天-5.6天。
从出行时段上看,4点-11点为旅客乘车去机场、火车站高峰。其中5-6点出发人群最高,高达6.9%;10-11点又会出现小的高峰,出行占比为5.1%。数据显示,使用接送机/站的用户平均行驶27.2公里,平均时长为36分钟。
大数据的论文篇十一
4月6日,联合交通部科学研究院对外发布《第一季度中国主要城市骑行报告》。该报告以ofo出行大数据为参考,首次采用城市骑行指数作为评估指标,对北京、上海、广州、深圳、天津、南京、西安、杭州等20座国内一二线城市的共享单车发展水平进行评估排名。
可以发现,在单车使用水平、节能减排水平、健康贡献水平、停车设施水平、服务环境水平和社会文明水平六个方面,每个城市的表现各有不同。行业专家分析称,该报告对透视我国城市慢行交通发展现状、追踪共享单车行业发展、推动智能绿色城市建设事业起到参考作用。
18~45岁人群成共享单车主要用户西安广州最男人、天津昆明最均衡
报告显示,18~45岁人群成共享单车骑行的主力用户,占比接近90%,其中30岁及以下群体占比达到55%,30~45岁占比约35%。由此可见,共享单车的用户不仅覆盖年轻群体,也受到了中年群体的广泛认可和使用。
同时,在用户男女比例分布中,不同的城市区分为了两大派系。一个是以西安、广州为代表的五座城市成为了“最男人”的共享单车骑行城市,男性用户占比达到55.90%~59.70%,较高于女性用户。而以天津、昆明为代表的五座城市则成了“最均衡”的共享单车骑行城市,男女比例在48%~52%之间,可以说基本相差无几。但综合来看,女性用户占比能达到45%左右。
中国城市整体骑行水平53.6分空间巨大综合指数六大榜单昆明东莞上榜
报告显示,20第一季度中国城市整体骑行水平为53.6分,其中北京以84.3位居榜首,上海、成都分别以79.3分和65.1分紧随其后。除此之外,深圳、昆明、杭州、广州、南京、厦门、福州、武汉等八座城市也高于平均分,城市骑行水平较为领先。
而53.6的整体骑行水平虽然较满分100分来看属于偏低水平,但考虑到年初共享单车才迎来一波的快速发展,诸多方面尚不完善,例如城市停车设施的建设,北京、上海、杭州三城虽然达到13分以上,但其他20座城市停车设施平均得分仅为7.55分,远低于满分20分。未来,随着共享单车的健康发展、城市停车设施的建设、服务环境的提升等因素逐步完善,分数还将进一步上升。
报告同时给出“2017年第一季度主要城市六大榜单”,北京位列“停车设施相对完善”、“节能减排贡献最大”、“政府服务环境最好”三个榜单之首。昆明则成为“最爱骑共享单车的城市”,东莞成为“我骑行·我健康”的榜首城市。
城市文明程度杭州12.9分排第一20城q1累计骑行5.93亿公里
报告针对社会文明程度,对各城市对共享单车的友好度进行了评分,杭州市以12.9分排名第一,南京、西安分别以12.75和12.22排名第二第三,北京仅以9.94分排名第九。在服务环境水平评估中,北京以满分15分位列第一。近期,全国各地陆续出台了针对共享单车的管理办法,如上海出台了《共享自行车服务规范》,成都推出了《成都市关于鼓励共享单车发展的试行意见》。
报告显示,我国20座城市第一季度累计骑行5.93亿公里,相当于绕地球14794圈,日均累计骑行距离为659万公里,相当于地球赤道的164倍。不仅如此,20个城市第一季度人均累计骑行消耗热量6840千卡路里,相当于燃烧掉1.8斤脂肪。
共享单车缓解城市交通出行难问题
数据统计,从1995年至,随着民用汽车保有量从1040万辆攀升至1.9亿辆,自行车的.保有量却从6.7亿辆,急剧下降至3.3亿辆。汽车成为代步工具的同时,给城市交通和生态环境也带来了极大压力,城市居民的出行成本急剧上升。
专家认为,共享单车+公共交通的出行模式,正逐渐替代家用汽车+步行+公共交通的出行模式,快速发展中的共享单车正改善着我国城市居民的出行模式,也对我国交通新体系建设产生深远影响。
大数据的论文篇十二
(一)数据1.0时代
数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。
(二)数据2.0时代
2.0时代开始于20xx年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。
(三)数据3.0时代
又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。
随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。
(一)大数据时代消费者成为市场营销的主宰者
传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。
(二)大数据时代企业精准营销成为可能
在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。
(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”
传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。
京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的'规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的jdphone的计划。
jdphone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。
(一)数据分析要树立以人为本的思维
“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。
(二)正确处理海量数据与核心数据的矛盾
大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。
(三)整合价值链以共享数据的方式实现价值创造
单纯的企业内部数据已经无法满足今天市场上顾客多样性的需求,大数据的共享已经迫在眉睫。首先,可以通过扩展常规上下游渠道的数据。例如京东与上游供应商的合作。其次,与社会化媒体数据建立联系。社会化媒体数据是外围数据的一个重要来源。但是如果只是搜集并没有把数据与企业本身营销策略或者数据发布者建立联系,那么数据就没有发挥其应有的价值。最后,虚拟人脉交换获取数据。比如建立企业自媒体收获粉丝获取数据等。
[1]岳占仁.大数据颠覆传统营销[j].it经理世界,20xx,17.
[2]单华.大数据营销带给我国网络自制剧的思考――以《纸牌屋》为例[j].青年记者,20xx,26.
[3]魏伶如.大稻萦销的发展现状及其前景展望.辽宁大学新华国际商学院.
大数据的论文篇十三
美国国家标准和技术研究院对大数据做出了定义:“大数据是指其数据量、采集速度,或数据表示限制了使用传统关系型方法进行有效分析的能力,或需要使用重要的水平缩放技术来实现高效处理的数据。”我们认为大数据价值链可分为:数据生成、数据采集、数据储存以及数据分析。数据分析是大数据价值链的最后也是最重要的阶段,是大数据价值的实现,是大数据应用的基础,其目的在于提取有用的值,提供论断建议或支持决策,通过对不同领域数据集的分析可能会产生不同级别的潜在价值。
虽然这些传统的分析方法已经被应用于大数据领域,但是它们在处理规模较大的数据集合时,效率无法达到用户预期,且难以处理复杂的数据,如非结构化数据。因此,出现了许多专门针对大数据的集成、管理及分析的技术和方法。
布隆过滤器:其实质是一个位数组和一系列hash函数。布隆过滤器的原理是利用位数组存储数据的hash值而不是数据本身,其本质是利用hash函数对数据进行有损压缩存储的位图索引。其优点是具有较高的空间效率和查询速率,缺点是有一定的误识别率和删除困难。布隆过滤器适用于允许低误识别率的大数据场合。
hash法,其本质是将数据转化为长度更短的定长的数值或索引值的方法。这种方法的优点是具有快速的读写和查询速度,缺点是难以找到一个良好的hash函数。
索引:无论是在管理结构化数据的传统关系数据库,还是管理半结构化和非结构化数据的技术中,索引都是一个减少磁盘读写开销、提高增删改查速率的有效方法。索引的缺陷在于需要额外的开销存储索引文件,且需要根据数据的更新而动态维护。
trie树:又称为字典树,是hash树的变种形式,多被用于快速检索,和词频统计。trie树的思想是利用字符串的公共前缀,最大限度地减少字符串的比较,提高查询效率。
并行计算:相对于传统的串行计算,并行计算是指同时使用多个计算资源完成运算。其基本思想是将问题进行分解,由若干个独立的处理器完成各自的任务,以达到协同处理的目的。
传统数据分析方法,大多数都是通过对原始数据集进行抽样或者过滤,然后对数据样本进行分析,寻找特征和规律,其最大的特点是通过复杂的算法从有限的样本空间中获取尽可能多的信息。随着计算能力和存储能力的提升,大数据分析方法与传统分析方法的最大区别在于分析的对象是全体数据,而不是数据样本,其最大的`特点在于不追求算法的复杂性和精确性,而追求可以高效地对整个数据集的分析。总之,传统数据方法力求通过复杂算法从有限的数据集中获取信息,其更加追求准确性;大数据分析方法则是通过高效的算法、模式,对全体数据进行分析。
[2]黄晓斌,钟辉新.基于大数据的企业竞争情报系统模型构建[j].情报杂志,20xx(03).
大数据的论文篇十四
12月8日消息,第一财经商业数据中心发布的《中国互联网消费生态大数据报告》显示,中国7.1亿网民将成为潜在的互联网消费者。
80后、90后消费观念大不同
报告显示,80后与90后作为互联网消费领域的核心消费人群,90后在线上拥有鲜明消费特征,主要的标签是娱乐至上、爱新鲜和个性化。90后在玩乐方面的兴趣广泛,既表现出对桌游、美食、夜生活的喜爱,也对二次元、游戏等虚拟领域有着更高的付费意愿。
相比较下,80后则更顾家,在互联网理财、互联网地产、电商等消费领域有显著的消费特征,是互联网消费的主力人群。从阅读内容方面看,80后更加偏爱看健身、旅游、时尚、房产等话题的资讯;购物方面看,80后也更偏爱大家电、汽车用品、童装等居家物品,由此可以看出,80后互联网消费者特征的关键词是家庭化、品质和资讯控。
网红借力电商成“吸金王”
今年电商和社交的融合成为一个典型现象。数据显示,红人经济的发展使得红人店铺的浏览成交高于一般女装店铺,近50%的粉丝有重复购买的行为,并且规模大的红人店铺比一般红人店铺转化率高出57%。可以看出电商红人的店铺具有粉丝粘性高、高浏览高转化以及销售爆发力强的优势。
便捷和品质成互联网消费核心诉求
移动互联网的渗透和众多新应用的兴起使得我国互联网消费生态不断孕育繁衍,消费者的需求也因此更加清晰细分,便捷与品质的诉求是两大明显特征。
报告提出,消费趋势的便捷主要体现在降低门槛、资源优化、服务整合和随时随地四个特性。以滴滴出行为例,滴滴优化夜间运力资源极大满足了人们夜间个性化出行的需求。数据显示,机场、火车站、餐饮等夜间交通资源不足的地方,使用滴滴出行的偏好度均呈现上升趋势,体现出网约车满足了消费者的`交通需求。
需求“品质化”则大大促进了商家运营发展轨迹的高端化、定制化、专业化和服务化。报告数据显示,从趋势上看,飞猪三年跟团游的增幅高于自由行的增幅,且跟团游中有近8成的订单数是当地游,可以看出组件式的“diy自由行”已成为了消费者旅游出行的新风尚,同时也反映了多元化的自由行产品为消费者提供了更丰富的定制体验。
【本文地址:http://www.xuefen.com.cn/zuowen/3868456.html】