最优大数据的论文(案例17篇)

格式:DOC 上传日期:2023-10-27 19:38:12
最优大数据的论文(案例17篇)
时间:2023-10-27 19:38:12     小编:LZ文人

可以发现问题、找到不足之处,并制定下一步的发展计划。较为完美的总结应该突出重点,避免冗长和繁杂的内容。以下是一些优秀总结范文的分享,希望能给大家提供一些参考和借鉴。

大数据的论文篇一

在大数据时代的大数据管理的人员管理形式,不断发展和改革的过程中,计算机的软件和硬件都得到了有效的提高,磁盘、磁鼓等储存软件,得到了全面的普及和发展。同时,在在不断发展的过程中,计算机将大数据的组成形式,叫做大数据文件,并且在大数据文件上就可以直接的取名字,直接的进行查看,这对大数据的管理,无疑不是一个新的发展的起点。在大数据时代的大数据文件管理的过程中,由于大数据长期的保存在外面的,这样在对的大数据处理、分析、查找、删除、修改等操作的过程中,提供了极大程度上的'便利,其对其操作的程序,也具有特点的要求。但是,在文件管理的过程中,由于共享性能较大,数据与数据之间缺乏一定的独立性,对其管理和维护的费用和时间较大,这样往往工作效率提高,不能被广泛的使用。

大数据的论文篇二

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的cio也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多it知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的bi,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧―。巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时bi的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

看完此书,我心中的一些问题:

1、什么是大数据?

查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4v特点:volume、velocity、variety、veracity这个好像是ibm的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2、大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

3、大数据带来的影响

1)预测未来书中以google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

大数据的论文篇三

职责:

1、负责构建数据挖掘与数据分析体系,负责海量运营数据的分类汇总和分析研究;

3、负责数据管理团队的建设工作,有效领导数据分析与挖掘团队支持和推动业务发展;

4、协助完成业务关键目标指标制定、目标达成过程管理。

任职资格:

1、数学、统计学,计算机软件相关专业全日制本科及以上学历,至少4年相关工作经验;

4、对业务变化有敏锐的洞察力;能利用数据对于业务形态与商业模式有深入的理解;

5、数据敏感、善于创新、思维敏捷、精力充沛,沟通能力强,具备较强的团队合作精神并能够承受较大工作压力。

它山之石可以攻玉,以上就是为大家带来的6篇《大数据论文范文大数据论文范文大全》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

大数据的论文篇四

在当今科技发展迅猛的时代,大数据已成为不可忽视的重要资源。它为我们的生活带来了很多改变,也给企业、政府和个人提供了更多机会。通过对大数据的学习和实践,我意识到了大数据的重要性和潜力。在这篇文章中,我将从数据收集、数据分析、数据隐私、数据治理和数据应用五个方面分享我对大数据的心得体会。

首先,数据收集是进行大数据分析的基础。无论是企业、政府还是个人,我们都应该积极参与数据收集。在大数据时代,每个人都是潜在的数据生成源。企业可以通过设备和传感器收集销售数据和用户行为数据,政府可以利用数据收集来改善公共服务,个人可以通过社交媒体和移动应用来分享自己的数据。数据的多样性和数量越大,分析结果越准确,应用场景也会更多。

其次,对数据进行分析是利用大数据的核心。大数据分析可以帮助企业和政府发现隐藏的模式和趋势,为决策提供有力支持。在我们的日常生活中,大数据分析也是无处不在的。我们可以通过购物网站推荐来发现感兴趣的产品,通过社交媒体的算法来找到和我们兴趣相投的人。然而,大数据分析不仅仅是利用算法和工具,还需要人的智慧去理解数据背后的故事。

第三,数据隐私是大数据时代面临的主要问题之一。随着数据的不断增长,隐私问题也日益突出。个人数据的泄露可能导致信息被滥用,对个人和社会带来无法估量的风险。因此,数据隐私保护应该成为我们在使用大数据时考虑的重要因素。政府需要制定相应的法律和法规来保护个人隐私,企业需要建立严格的数据使用和保护机制,个人也应该提高自我保护意识,选择安全可靠的应用和平台。

第四,数据治理是保障数据质量和安全的重要手段。数据治理是一种组织和管理数据的方式,涉及到数据的标准化、清洗、分类和存储等方面。数据治理的目标是确保数据可靠和可用,提高数据价值和利用率。在数据治理过程中,需要建立明确的责任和权限,制定相应的规范和流程,采用合理的技术手段来保护数据的完整性和安全性。

最后,大数据的应用是实现数据价值的最终目标。大数据的应用可以涵盖各个领域,如金融、医疗、交通和教育等。通过大数据分析,金融机构可以预测风险,提高客户满意度;医疗机构可以个性化治疗,提高疗效;交通部门可以优化交通流量,减少拥堵;教育部门可以根据学生的兴趣和能力提供个性化教育。大数据的应用可以为企业提供竞争优势,为政府提供决策支持,为个人提供个性化服务。

综上所述,大数据是当今信息社会的重要资源,对企业、政府和个人都具有重要意义。通过对大数据的学习和实践,我深刻认识到了数据收集、数据分析、数据隐私、数据治理和数据应用的重要性和挑战。在未来的发展中,我们需要更加重视数据的收集和利用,同时加强对数据隐私的保护和数据治理的规范,以实现大数据的最大价值。

大数据的论文篇五

20xx年5月世界著名咨询机构麦肯锡公司发布了《大数据:下一个竞争、创新和生产力的前沿领域》的研究报告,宣告“大数据”时代已经到来。大数据时代的到来对人力资源管理带来了新的变化和机会。通过运用大数据思维方式,利用移动互联网+的新技术、新方法能够进一步完善人力资源管理信息系统,使人力资源管理更加专业化、科学化,为人力资源管理信息化建设迈入4.0创造了条件。

二、人力资源管理信息化历程

人力资源管理信息化,主要是指企业基于互联网,依托先进的人力资源管理理论,以软件系统为平台,通过信息技术对人力资源进行优化配置的动态过程。人力资源信息化是信息时代人力资源发展的必然趋势,是企业及时满足业务需求,实现企业高效的人力资源管理,增强企业核心竞争力的必然手段。笔者认为人力资源管理信息化随着信息技术的发展经历了1.0、2.0,3.0并在向4.0进发的历程。

人力资源管理信息化1.0阶段指的是上世纪80年代初,随着计算机在管理领域的普遍应用,国外一些先进的应用软件企业开始将关注点聚焦于人力资源管理领域。首先利用应用软件进行的是人力资源管理中最复杂最繁重的薪资管理,这大大降低了该项工作的繁冗程度并且提高了效率。由于当时计算机网络不是很普及,人力资源管理系统基本是孤立地、单一的软件。

随着数据技术、网络技术的发展,人力资源管理系统迈入2.0时代。人力资源管理信息化已经开始触及人力资源管理的各个方面。但是受限于数据计算能力和应用处理能力,对于大型集团的人力资源管理系统一般是按分支机构分别购置服务器部署运行,各分支机构定期汇总数据上报总部。人力资源管理系统2.0时代基本已经实现人力资源管理基础信息的电子化,使hr人员从繁重的基础信息处理工作解脱出来,有更多的时间去考虑组织及员工的发展需求。但是在2.0阶段,人力资源管理系统对于数据的分析和应用还停留在简单的报表阶段,还未形成对人力资源数据的预警、预测、数据挖掘和分析。

进入21世纪后,随着计算机和互联网技术的发展,人力资源管理系统采用数据大集中以及基于互联网访问的技术,从单一的人力资源部门的电子化软件扩展到涉及公司各个层面的关键信息系统。通过面向全员的信息化工具,人力资源管理系统3.0阶段一方面可以通过系统全面落实人力资源管理规划,另一方面通过延伸人力资源管理范围,提高各级人员参与人力资源管理的程度,有效地改善了人力资源部门的服务范围和服务质量。人力资源管理系统3.0阶段由于采用数据大集中技术,对数据的挖掘分析以及多维度的预警、预测已经成为可能。人力资源管理的数据优势已经在企业经营分析、管理决策中逐渐发挥出来。企业人力资源管理部门以及各级管理者已经开始利用人力资源数据提升经营决策的科学性。

随着大数据时代和移动互联网时代的到来,将大数据的概念和技术引入人力资源管理将进一步提升人力资源管理信息化水平,人力资源管理信息化将步入4.0时代。

三、大数据时代人力资源信息化

大数据这一概念,首先要从“大”入手,“大”是指数据规模,大数据一般指在10tb(1tb=1024gb)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4v 来总结,即体量大(volume),数据从tb 级别跃升到pb 级别,庞大且连续的数据流使得数据更具完整性;多样性(variety),数据类型繁多,数据来源及承载方式多样化;速度快(velocity),数据可以高速地存储,借助于云计算,即使在数据量非常庞大的情况下,也能做到实时处理;价值的稀疏性(value),信息海量但价值密度低,犹如大海捞针却弥足珍贵。

进入大数据时代,对人力资源管理及其信息化建设将带来巨大的机遇和挑战,人力资源信息化在4.0阶段将呈现出以下特点:

1.人力资源管理系统数据的多样化及社交化

在大数据时代,忠实地采集、记录人类活动的一切数据是基础。人力资源管理系统数据在大数据时代将不再局限于人力信息档案或者“人事部门”的数据。企业的经营数据、利润数据等业务数据也将纳入人力资源管理数据范畴。同时员工的社交数据、地点数据、工作数据等碎片数据也将被系统采集和分析。人力资源管理系统的数据模型和数据存储方式将被重新定义以满足数据存储、处理和分析所必需的高速和敏捷。

2.人力资源管理系统“移动化”与安全性

为了能够随时随地获取“与人相关”的数据,大数据的收集渠道将不再仅仅局限企业内部的信息系统,人力资源管理系统必须具有随时随地获取数据的能力。人力资源管理系统数据获取将更多地依靠移动端甚至是传感器等新技术的使用,人力资源信息化需要打造一条有效连接hr所服务的管理者和员工的信息高速公路。由于“人的数据”高度连接和聚合,数据的安全性和隐私保护将成为一个重要课题。有效地解决数据的公开和隐私的问题将是人力资源信息化建设者必须面对和解决的一个重要挑战。

3.人力资源管理系统工具的多样化

在拥有和采集了大量人力资源日常数据后,对数据的分析、整理、整合的能力将至关重要。传统的、单一的人力资源管理系统将无法胜任如此庞大的.数据处理任务。通过采购第三方的数据处理、分析工具将有利于提升人力资源管理系统的数据分析能力,有利于企业通过数据驱动人力资源管理创新。

同时,在人力资源管理人才招聘、人才测评、薪酬管理、人才绩效等垂直应用方面,由于大数据分析强调预测性以及前瞻性管理,人力资源管理应用将更具有专业性,市场上将出现多种专业性的应用工具。在人力资源信息化建设上,企业可以根据自身需要自主、灵活地选择专业化的工具,满足企业个性化需求。

4.人力资源管理系统“云服务化”

随着大数据和互联网技术的不断融合,基于云计算、云平台的人力资源服务平台将不断涌现。数据按需计算,企业按需付费的模式将不断成熟。对于传统企业来说,人力资源信息化将有了更快捷、便利的选择。企业信息化部门在实施人力资源信息化时将不再需要购置大量设备、采购产品软件后进行个性化实施,而只需按照企业需要购买相应的云服务即可。同时,由于在大数据应用的复杂性,不具有很强技术实力的企业可以借助云计算能力充分挖掘数据的价值,突破企业计算能力的壁垒,实现人力资源大数据应用。

大数据时代,企业的竞争将是数据应用能力的竞争。人力资源信息化建设的从业者利用大数据技术建设更加专业化、智能化的信息系统,为人力资源管理服务提供更加客观、科学的数据服务将给企业创造出巨大的价值。人力资源信息化建设也会因为大数据技术的应用迈入一个崭新的时代。

参考文献

[1]周光华.基于“大数据”价值对人力资源管理的思考

[2]唱新.大数据在人力资源管理体系的应用

[3]李柯.大数据时代人力资源管理的机遇、挑战与转型升级

大数据的论文篇六

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作――舍恩佰格的《大数据时代》。维克托・迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文・凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据的论文篇七

职责:

1、根据分析要求,制定数据采集标准和目标,对原始数据进行业务逻辑处理。

2、分析企业客户数据,构建客户画像,构建企业和个人信用评分模型,支持运营相关业务数据分析和调取。

3、通过对公司运营数据研究,提出改善运营质量的方法和建议,搭建数据分析体系,为企业各级决策者提供支持。

4、熟悉数据挖掘建模过程及主流算法,具有大数据系统架构能力,熟悉spark等分布式机器学习框架,熟悉hadoop/hbase/hive等大数据处理平台相关数据挖掘、数据建模经验优先。

任职要求:

1、本科及以上学历,金融、数学、计算机等理工科相关专业

2、1-3年金融领域数据分析,建模经验,熟悉逻辑回归,决策树等建模方法。

3、有较强的学习能力,能够快节奏地学习,研究,产出并能独立开展工作。

4、对于数据有敏锐的直觉,能够自主挖掘数据背后的市场方向、规律、为业务部门提供决策依据。

5、有软件开发,机器学习,数据库,hadoop/hive经验者优先。

大数据的论文篇八

随着信息时代的到来,人们生活中的各个方面都开始涌现出海量的数据。这些大数据以惊人的速度增长,使得人们需要运用更加高效的方法来处理和分析这些数据,从而获得有价值的信息和洞察。在我与大数据打交道的过程中,我深深领悟到了大数据的重要性和它对我们生活的影响力。在这篇文章中,我将分享我对大数据的心得体会。

首先,大数据为我们提供了更全面和准确的信息。在过去,我们往往只能凭经验和感觉来判断事物的发展趋势和决策的方向。然而,随着大数据的普及,我们可以通过收集、分析和挖掘大量的数据,了解事物的真相和本质。比如,在市场营销领域,大数据可以帮助企业分析用户购买行为、消费偏好和市场趋势,从而制定更加精准和有效的推广策略。在医疗健康领域,大数据可以帮助医生分析患者的病例和治疗效果,为患者提供更加个性化和有效的治疗方案。通过大数据,我们可以更加科学地进行决策和规划,使我们的行动更加明确和高效。

其次,大数据为我们提供了更深入和全面的洞察。传统的数据处理方法往往只能分析孤立的数据点,而难以发现数据之间的联系和规律。然而,大数据具有强大的处理能力,可以将各个领域的数据进行整合和分析,从而帮助我们发现隐藏在庞大数据中的规律和趋势。比如,交通领域的大数据可以帮助我们了解城市交通状况和交通拥堵的原因,从而优化交通管理和规划。而在科学研究领域,大数据可以帮助科学家们分析海量的实验数据,发现科学事实和新的知识。因此,只有运用大数据的方法,我们才能够获取到更加准确、全面和系统的洞察,为我们的工作和生活带来更大的价值。

第三,大数据为企业和组织提供了更广阔的发展空间。在信息时代,数据已经成为企业竞争的重要资源。通过收集和分析大数据,企业可以了解市场需求、优化产品和服务,并制定合适的商业策略。比如,Amazon通过分析用户购买记录和偏好,为用户推荐个性化的商品,提高销售效率和用户满意度。而在政府组织中,大数据可以帮助政府进行城市规划、资源分配和社会管理,提高行政效率和服务质量。此外,大数据还为创新提供了更多的可能性。通过挖掘大数据中的信息和资源,创业者可以发现新的商业机会和创新方向,为社会的发展带来新的动力和活力。

第四,大数据也带来了一系列的挑战和问题。首先,大数据的处理和分析需要高度的技术和运算能力。大数据往往以海量的形式存在,数据存储、处理和分析需要庞大的计算资源和算法模型。其次,大数据的安全和隐私问题也引起了人们的关注。随着大数据的应用,个人和机构的隐私面临着更大的风险,需要制定更加完善的数据保护和隐私政策。此外,大数据的分析和使用也需要遵守法律和伦理的规范,避免滥用和侵犯他人的权益。

综上所述,大数据对我们生活的影响力是巨大的。通过大数据的处理和分析,我们可以获得更全面、准确和深入的信息和洞察。大数据为企业和组织提供了更广阔的发展空间,也为创新提供了更多的可能性。然而,大数据的应用也面临着一系列的挑战和问题。因此,我们需要积极应对这些挑战,保障大数据的安全、隐私和合法性,从而更好地利用大数据的力量,为我们的社会和生活带来更大的进步和发展。

大数据的论文篇九

职责:

1、负责构建数据挖掘与数据分析体系,负责海量运营数据的分类汇总和分析研究;

3、负责数据管理团队的建设工作,有效领导数据分析与挖掘团队支持和推动业务发展;

4、协助完成业务关键目标指标制定、目标达成过程管理。

任职资格:

1、数学、统计学,计算机软件相关专业全日制本科及以上学历,至少4年相关工作经验;

4、对业务变化有敏锐的洞察力;能利用数据对于业务形态与商业模式有深入的理解;

5、数据敏感、善于创新、思维敏捷、精力充沛,沟通能力强,具备较强的团队合作精神并能够承受较大工作压力。

大数据的论文篇十

探究式教学法是教师在教学过程中以问题为教学研究对象,组织教学内容,使学生通过对问题的了解、资料查询、阅读、思考、研究、探讨、交流和听讲,学会获取知识和应用知识,收集和辨析有效数据,系统地分析问题,获得解决问题的答案,并进行交流、评价的一种教学方法。其核心内容是通过问题的设定进而激发学生的学习热情,变被动为主动,把学生真正当成教学主体,培养学生养成创新思维模式。在摸索和探究中不断前行,从而系统地掌握课程知识内容并形成完整知识体系。

统计学原理课属于经济与管理类专业的一门必修基础课程。对构建学生基本知识体系,逐步形成分析和解决问题的方法体系尤为重要。然而该课程内容较多,包括了统计工作过程、综合指标体系、动态数列分析、指数分析、抽样调查推断、统计预测等多项内容。每一项内容均由完整的理论知识和独特的方法构成。知识点较多且晦涩难懂,学生不易理解掌握。尤其在以往的传统教学模式下,老师卖力地讲,拼命地试图将理论知识与生产生活实践相结合,却始终无法有效激发学生的学习热情。最终是“教师讲得累、学生打瞌睡”。鉴于此,我们结合经济与管理专业的非统计类专业特点,在我校四个经济与管理类专业的统计学原理教学中逐步引入“探究式教学”方法,把教学的主体定位到学生,充分挖掘学生的主观能动潜力,拓展学生的创新思维模式,增加学生实际动手能力。把教学课堂变成探究讨论场所,让传统的教学活动重新激起一个又一个的思维涟漪,收到了较好的教学效果。

一探究式教学法在统计学原理课程中的实施环节

1问题选取

要依据教学大纲的定位,同时又要结合非统计专业的现有实际,结合我校应用型本科的基本定位,选择难易适中且和工作实践紧密结合的内容。做到由易到难,逐渐加大难度,稳步推进,慢慢形成学生的探究思维定式。

在实施探究式教学的初期阶段,应选取单一的并能够在较短时间内完成的问题。最好是能够当堂形成结论且给学生较深的印象。随着探究问题的不断深入,结合教学大纲,问题的.选取进一步深化,逐步设置有一定探究压力但系统性不强并限定探究学习难度的问题。此时可以按照不同的抽样标准实施抽样,让各抽样小组分别观察其组内的方差水平。在此基础上一旦实施整群抽样,则误差水平可能的变动趋向。也可以就静态指标和动态指标的特点提出问题,让学生分别去对应会计课程的存量指标和流量指标,以学科之间的交叉和连贯激发学生的探究热情。等到学生逐步适应探究式学习这一新的学习模式后,教师就可以布置系统的、需要学生分组分任务在较长时间内才能完成的任务。

2布置问题

将选取的问题布置给各个小组。小组根据问题的大小与多寡,通常5~6人为一个小组。对于较单一的问题,可以多分几个组,各组的问题不强调其唯一性,可以重复,以便于比较不同小组的完成质量。对于较为复杂的问题,可根据问题的数量和工作任务情况,先确定各组组长(初期组长可由教师根据学生的综合能力统一指定,但随着探究活动的逐步开展,组长应鼓励个人报名或学生推荐),然后由学生根据自己的知识侧重和个人喜好选择小组成员。每一个小组承担不同的探究任务。但无论问题难易程度如何,都必须确保每一个学生分担不同的探究任务,不允许有学生轮空,也禁止探究能力较强的学生大包大揽(但不排除必要的协作)。

3迅速完成组内分工

各组领取任务后,在较短时间内由组长在本组内根据个人的特长确定组内分工(3~5分钟即可)。制定抽样方案、实施抽样、搜集整理数据、查阅资料、分析推断、撰写报告等。对于具有共性并较为重要的知识点,应要求每一个学生都独自完成,不因分工而隔断知识体系。

4收集分工情况,据此串讲知识点,引导学生的工作方向

教师可收集各组分工情况的书面结果,根据分工结果分别讲授各方面、各环节涉及的知识内容。讲解应详略得当,有针对性,可以打破书本固有的知识点顺序。告诉学生在各自的工作中可能涉猎的知识内容,资料查找的方向以及分析解决问题要用到的方法。说到统计指数,涉及同度量因素,就涉及了物量指标和价值指标问题,涉及派氏、拉氏指数的选取,常用的cpi确定方法同样会牵扯到基期的选择、权数的确定。因而鼓励学生去查找相应的文献资料,并进一步思索可能出现的新问题。拉氏、派氏指数分别代表了哪一种思维定势和探究趋向?指数体系的确立基于什么考量和出发点?指数体系的确立和因素分析的实际意义在哪里?等等。这种串讲,既为学生指明了工作的方向,帮助学生打开思路,同时又告知了基本的分析方法。

5文献检索,初步探究

学生根据教师的点拨,依据各自工作任务,分头查阅相关文献资料。指导学生利用图书馆、互联网查阅相关的统计公报、统计年鉴、报纸杂志和相关学科的理论知识。并在此基础上对所持问题进行初步探究。资料文献的查阅也是一个循序渐进的过程。学生很可能在探究初期只是查阅了和问题直接相关的表象资料,而忽略了深层探究所需数据的收集,结果出现“头疼医头、脚疼医脚”的局面。

6集中讨论,相互激励,深入探究

各小组成员在收集相关资料并形成初步意见后,可及时组织大家集中讨论。每个人均可阐述自己观点,对所选用数据资料的可信度,使用方法是否得当等,听取他人意见。讨论过程中可有效实施相互的智力激励,迸发出灵感火花,为进一步发现深层次问题,探究和解决深层问题打下良好基础。

7课堂交流、汇报

学生在组内讨论探究的基础上,各自完成分工任务。形成统一意见后,应将成果制作成ppt文档。在规定时间内由教师组织集中进行课堂交流、汇报。由各组主讲人通过ppt演示本组工作过程和工作成果,允许组内其他成员加以补充完善。

8教师讲评

根据各组汇报结果,教师要进行及时讲评。既要对学生的分析运用能力给予充分肯定,又要对其在方法、思路上存在的问题给予指正。指导学生及时转换思路,回归正确的探究方向。探究式教学虽能够有效激发学生的探究热情,但由于学生认识问题和所学知识的局限性,极易形成学生“钻进去、出不来”。问题的叠加效应可能会打击学生探究热情,或导致“不可知论”。教师的及时讲评和肯定,是进一步引导学生回归探究学习正途的指南针。

二探究式教学法在应用中应注意的几个问题

探究式教学可以很好地调动学生的学习积极性,最大程度激发学生的探究创新活力,提升教学质量和强化教学效果。但是在实际应用时必须注意以下几个问题。

探究式教学从表面看是把探究学习的主体转化为学生,但实质上绳子的另一端是教师。教师的备课、引导、启发在整个教学环节中起着至关重要的作用。教师的备课任务不仅不能削弱,而且更应该得到加强。从问题的选取设定到最后的验收讲评,教学的主线仍然紧握在教师手中。哪些问题可以选来作为探究目标,什么样的问题可以实施分组讨论、协作完成,都需要教师精心设计。这就需要教师具备完备的知识体系和对教学方法的综合把控能力。需要教师不断充电并择机走向生产实践一线,了解学科发展动态,始终站在学术发展前沿。

2探究式教学需要教师的及时引导和启发

在实施这种教学方法的初期,由于学生对新的教学模式一时难以适应,会因各小组组织不力,学生无从下手,不了解整个教学活动的核心内容,而产生畏惧情绪。因而教师要及时地加以引导,为学生指明工作的方向并及时答疑解惑。教师可以利用常规教学课堂平台,也可以利用互联网的相应沟通平台或手机飞信、微信等方式,收集学生意见和问题并及时给予指导,将学生引导到独立探究、合作探究的学习环境中,逐步形成探究式学习的良好氛围。

3探究式教学仍需要传统的课堂讲授模式加以配合

对于学科的基础知识、基本概念我们很难将之归为探究式问题。加之学生在接收一门新的课程知识时往往出现短暂的不适应。因而教师仍要利用讲堂这一平台向学生讲解基础知识。教师在讲授这些内容的时候应着力使用启发式教学方法,多列举实例,多提出问题,逐步培养学生思考问题的能力,并产生探究问题的冲动和欲望。进而实现从传统教学模式向探究式教学的自然过渡。

4探究式教学课后占用时间较多,容易加大学生的学习负担

教师要合理安排探究式教学内容。挑选有针对性和实际意义的内容作为选题,并适度调整教材体系中的相关章节。做到教学有重点、探究有实效。把一些容易理解和掌握的知识交给学生自我消化,或由教师使用传统方式串讲带过,把核心知识且具有探究的条件和意义的章节认真组织学生探究学习。避免全面开花、拘于形式,结果造成学生到最后劳神费力、难有所获。

统计学原理课程内容较多,结构复杂且难懂。但却是经济与管理类专业学生必修的一门方法论学科,在整个学科知识体系中占有重要位置。传统的课堂讲授模式无法激发学生的学习热情,很难收到良好的教学效果。实施探究式教学法,可以充分调动学生主观能动性,培养学生学习探究的良好习惯,为今后的实际工作和终身学习奠定基础。教师要先弄清楚探究式教学的真正意义,对探究式教学的实施环节、问题的选取、节奏的把控、效果的评定有着全面而深刻的认识。欲使探究式教学能够实现预期教学目的而非只是“标新立异”,则需要教师不断充实完善自我,做到高屋建瓴、游刃有余。

大数据的论文篇十一

摘要:随着就业信息化建设的发展,信息技术已经被广泛应用于高校毕业生就业中,就业信息化建设是近年来大学生就业问题关注和努力的重点方向。但目前就业信息化建设中依然存在很多不足,如信息整合程度低、信息利用率低下、信息平台功能不完善、信息交流不足、网络求职成功率偏低等。在当今大数据时代背景下,就业信息化建设迎来了新的发展机遇。

关键词:大数据;信息化;就业

随着互联网的发展,信息技术被广泛用于生活、工作、学习、服务、交通、生产等各个领域,改变了世界,为人类带来了诸多便利。就业信息化建设对我国经济社会发展稳定具有重大战略意义。在各种信息化平台的帮助下,大学生能够更容易、更便捷地找到就业岗位,在我国高校扩招造成毕业生数量逐年递增的情况下,极大地缓解了社会的就业压力,为我国经济建设提供了各方面的劳动力和人才。因此国家高度重视就业信息化建设,21世纪以来,党中央、国务院、教育部多次下达指令,要求大力开展各项就业信息化建设工作。

一、目前我国就业信息化建设的现状及不足

经过十几年的努力,目前我国就业信息化建设已经基本完善,形成了以各级政府就业指导部门、用人单位、高校、毕业生为核心的就业信息化体系,通过各种信息化平台,把各级政府就业指导部门、用人单位、高校、毕业生连接起来。各级政府就业指导部门网络平台、各高校就业指导中心网站、各种招聘信息、毕业生求职信息等信息化要素的相互作用,实现大学生完成就业。但目前我国就业信息化建设依然存在很多不足,主要有一下几点:

(1)信息整合程度低、信息利用率低下。目前已有的就业信息平台数量很多,各种就业平台发布的信息数量非常巨大,但信息分布松散,整合程度较低。比如,同一岗位的招聘信息,可能会在多个不同的招聘网站上看到,求职者需要到多个求职网站去搜寻。这就增加了求职者获得求职信息的时间成本,导致信息利用率低下。

(2)信息化建设视野狭窄,平台之间联系不够,信息交流不足。政府部门在信息化建设统一规划方面做得不好,没有从高的层面进行部署,建设视野不够宽广。各个信息平台一叶障目,平台之间的联系不够紧密,最终导致了信息交流不足。

(3)信息平台功能不完善,不能更好服务就业工作。目前大部分的信息平台以发布就业信息为主,一些平台具备网络简历投递的功能,但这些对于实现求职者顺利就业是不够的。求职者需要通过信息化平台了解到当前就业形势、各行业就业现状、薪酬水平、地域差异、前景分析等信息,需要得到实时疑问解答,进行广泛交流,这些都是当前的信息平台所缺乏的功能。

(4)网络求职成功率不高。十几年来信息化建设促进了大学生就业工作的开展,越来越多的求职者在网上进行简历投递等求职活动,但不可否认的一个事实是招聘会、宣讲会、人才市场对于就业依然作用突出。调查显示,很多求职者认为网络对于求职的最大帮助是提供便捷、高效、廉价的就业信息,而网络招聘中简历投递成功率太低,所以求职者更愿意到招聘现场去求职,各地招聘现场的火爆状况就是很好的证明。这也说明了目前信息化对求职的帮助仍然处于较低的水平。

二、大数据时代的到来,为就业信息化建设提供了新的发展机遇

随着信息化技术的发展,家用电脑、智能手机、宽带技术、移动互联网、物联网等数据来源及数据承载方式的高速发展,全球的信息数据量出现了跨越式增长,信息大爆炸成了时代的特征,大数据时代已经正式到来[1]。

大数据(big data, mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产[2]。在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的特点可以概括为4v:volume(大量)、velocity(高速)、variety(多样)、value(价值)。大数据最核心的价值就是在于对于海量数据进行存储和分析。大数据技术可以从各种各样类型的数据中,快速获得有价值的信息。

利用大数据技术可以解决目前就业信息化建设中存在的种种不足,进一步加强就业信息化建设,更好帮助大学毕业生就业。

(1)加强预测分析,更好开展就业指导工作,加强就业针对性。大数据技术通过对国内国际形势、当前经济发展、过往就业信息、地域信息等大量数据进行分析,预测就业形势、各行业就业前景、薪酬水平、地域竞争状况、行业前景等能内容进行分析,给出可靠的预测数据,便于政府就业指导部门更好安排部署就业工作;企业可以合理安排招聘岗位,选择适合的求职者,避免员工频繁跳槽现象,节约招聘成本;高校可以更好地开展大学生就业指导工作,大学毕业生根据自己专业、兴趣、爱好、特长、个人发展规划,有针对性地明确求职目标,进行充分的求职准备。这些能加强各方面开展就业工作的针对性。

(2)高度整合信息,紧密联系信息平台,加强信息交流,提高信息利用效率。通过对大量信息的收集和分析,大数据平台可以完成信息的高度整合,使各个信息平台紧密联系在一起,平台之间的信息可以实现快速交流,大幅度提高信息利用效率。在大数据的帮助下,求职者搜寻求职信息时,重复的信息可以自动合并,同一类信息可以全部展现,信息获取效率得以提高;求职者的简历、求职信等求职信息可以储存在云端,在需要时随时可用于不同的网络招聘,这样求职者可以省去大量重复写简历的时间;通过大数据综合分析,网络上的虚假招聘信息可以迅速被识别剔除,信息审核得以强化,避免求职者上当受骗。

(3)完善信息平台功能,扩展信息平台种类,提高网络求职成功率。大数据技术可以进一步完善各信息平台的功能。信息平台将不仅仅提供求职信息,还会增加就业分析预测、实时交流、就业指导、网络简历投递和筛选、视频面试等功能。

随着大数据技术的发展,信息的传播已经不只是依赖电脑,智能手机、便携平板电脑、智能穿戴设备都成了信息传播媒介,信息平台也不再局限于互联网网站,qq、微信、微博等实时交流工具和各种app应用也成了新的信息平台,更加方便、快捷地发挥作用,借助于这些平台,求职者可以随时、随地进行信息浏览、投递简历、疑难询问、交流沟通等,企业hr可以随时发布信息、筛选简历、疑问解答、视频面试等,极大地提高求职的便捷性和成功率。

总而言之,大数据时代的到来,为以后的就业信息化建设提供了新的发展机遇和发展思路,充分利用大数据技术的各种优点和优势,就业信息化建设将更好服务于就业工作。

参考文献:

[2] 杨旭, 汤海京, 丁刚毅. 数据科学导论[m]. 北京理工大学出版社, 2014.

大数据的论文篇十二

4月6日,联合交通部科学研究院对外发布《第一季度中国主要城市骑行报告》。该报告以ofo出行大数据为参考,首次采用城市骑行指数作为评估指标,对北京、上海、广州、深圳、天津、南京、西安、杭州等20座国内一二线城市的共享单车发展水平进行评估排名。

可以发现,在单车使用水平、节能减排水平、健康贡献水平、停车设施水平、服务环境水平和社会文明水平六个方面,每个城市的表现各有不同。行业专家分析称,该报告对透视我国城市慢行交通发展现状、追踪共享单车行业发展、推动智能绿色城市建设事业起到参考作用。

18~45岁人群成共享单车主要用户西安广州最男人、天津昆明最均衡

报告显示,18~45岁人群成共享单车骑行的主力用户,占比接近90%,其中30岁及以下群体占比达到55%,30~45岁占比约35%。由此可见,共享单车的用户不仅覆盖年轻群体,也受到了中年群体的广泛认可和使用。

同时,在用户男女比例分布中,不同的城市区分为了两大派系。一个是以西安、广州为代表的五座城市成为了“最男人”的共享单车骑行城市,男性用户占比达到55.90%~59.70%,较高于女性用户。而以天津、昆明为代表的五座城市则成了“最均衡”的共享单车骑行城市,男女比例在48%~52%之间,可以说基本相差无几。但综合来看,女性用户占比能达到45%左右。

中国城市整体骑行水平53.6分空间巨大综合指数六大榜单昆明东莞上榜

报告显示,20第一季度中国城市整体骑行水平为53.6分,其中北京以84.3位居榜首,上海、成都分别以79.3分和65.1分紧随其后。除此之外,深圳、昆明、杭州、广州、南京、厦门、福州、武汉等八座城市也高于平均分,城市骑行水平较为领先。

而53.6的整体骑行水平虽然较满分100分来看属于偏低水平,但考虑到年初共享单车才迎来一波的快速发展,诸多方面尚不完善,例如城市停车设施的建设,北京、上海、杭州三城虽然达到13分以上,但其他20座城市停车设施平均得分仅为7.55分,远低于满分20分。未来,随着共享单车的健康发展、城市停车设施的建设、服务环境的提升等因素逐步完善,分数还将进一步上升。

报告同时给出“2017年第一季度主要城市六大榜单”,北京位列“停车设施相对完善”、“节能减排贡献最大”、“政府服务环境最好”三个榜单之首。昆明则成为“最爱骑共享单车的城市”,东莞成为“我骑行·我健康”的榜首城市。

城市文明程度杭州12.9分排第一20城q1累计骑行5.93亿公里

报告针对社会文明程度,对各城市对共享单车的友好度进行了评分,杭州市以12.9分排名第一,南京、西安分别以12.75和12.22排名第二第三,北京仅以9.94分排名第九。在服务环境水平评估中,北京以满分15分位列第一。近期,全国各地陆续出台了针对共享单车的管理办法,如上海出台了《共享自行车服务规范》,成都推出了《成都市关于鼓励共享单车发展的试行意见》。

报告显示,我国20座城市第一季度累计骑行5.93亿公里,相当于绕地球14794圈,日均累计骑行距离为659万公里,相当于地球赤道的164倍。不仅如此,20个城市第一季度人均累计骑行消耗热量6840千卡路里,相当于燃烧掉1.8斤脂肪。

共享单车缓解城市交通出行难问题

数据统计,从1995年至,随着民用汽车保有量从1040万辆攀升至1.9亿辆,自行车的.保有量却从6.7亿辆,急剧下降至3.3亿辆。汽车成为代步工具的同时,给城市交通和生态环境也带来了极大压力,城市居民的出行成本急剧上升。

专家认为,共享单车+公共交通的出行模式,正逐渐替代家用汽车+步行+公共交通的出行模式,快速发展中的共享单车正改善着我国城市居民的出行模式,也对我国交通新体系建设产生深远影响。

大数据的论文篇十三

各位小伙伴们:

大家好!

我是负责编写政治押题部分的清华学长,在整理资料的过程中有一些心得,在此分享给大家。首先要和大家说明的是,通过大量的数据分析和整理,师兄可以得出这样的结论,即考研政治押题的套路无非两种:

我们判断一个机构是否押题成功,往往有两个标准:一是材料是否命中;二是知识点是否命中。可以说,只命中其中之一就算押中题目的话,其实是非常简单的。因为每一年的热点很有限,很多机构出的最后4套题常常题量不止四套,或者每个问题之间都没什么关系,一个问都赶上一道大题了,完全是为了押题而出题,题目本身不具备质量。

一般来说,小伙伴们真正需要的是两个标准都达到,但考研机构只要达到了其中之一,即算是押中了。这样看来,我们就不难理解一些小伙伴们常常听到某些机构年年都押到了百分之六七十,但真正考试的时候问题与材料都对上的却很少,或者即便对上了也是小伙伴们自己都能想到的简单考法一类的情况也就不足为奇。因此,大家在最后复习的这几天时间里,切勿盲目背诵押题卷纸。我们购买押题卷子的目的是通过押题卷纸把握今年的热点和重点,并进行模拟训练。此外,大家也可以通过答案来熟悉知识点如何与材料结合,要如何套话,保证我们书写量的足够。而最后对知识点的把握,还是要回归书本才行。

相信很多小伙伴们都应该看过我们为大家推出的政治押题板块,其中的内容师兄在这里就不再赘述了。依法治国、抗日战争、apec、小平同志诞辰110周年等等,几乎都是必考的内容。这些内容很有可能以大题的形式出现,而且形式也非常多样:例如谈谈小平的改革开放和今天的'“顶层设计”;谈谈apec蓝与人与自然;依法治国和道德与法律;抗日战争胜利和甲午海战失败,等等等等。以此,涉及的知识点真的非常多,不仅需要大家熟悉地把握这些热点本身,还要对一些关联到的知识点也要有清楚的认识。可以说,这些内容占大纲的比例已经非常大了,要背诵的内容很多,大家一定要好好加油才是。

除此之外,还有很多内容虽然不在热点之中,但同样非常容易出题。特别是马原和思修两大部分,特别是单多选,常常就知识点直接命题。例如马原直接考一道计算题,算一下有机构成或者是剩余价值率;或者出一个古诗词或者小故事或名人警句,谈一下涉及到哪些原理。大题上,思修也可以谈一谈理想,谈一谈大学生就业与创业之类。这些内容,各个机构押得也非常分散,带有很强的运气成分。这就要求大家对马原的基本原理一定要熟练把握,思修也要会套话,能讲出东西来。

特别是考取名校和跨考的同学,更是要努力在初试中取得靠前一些的成绩,才能在复试中保持优势。离考试只剩下几天,现阶段最好提分的就是政治和英语的写作部分。师兄的一位好友考前一周临时突击政治,也考了57的成绩,最后压线进了清华。但这位同学本来是知名985理工类热门专业前百分之十的成绩,又非常有天赋,学神级别,才最终被录取。大家既应该学习他突击时的劲头,也不能像之前他那样太过轻视政治。政治是一门短时高效的学科,虽然背诵很辛苦,但是在这最后几天的时间中,它最能给人回报。特别是对于不像师兄这样考取京畿之地的小伙伴们,政治上七十也是不难的。最后师兄给大家一点小建议,我们背诵的时候不能只是对着背,还要多多动笔,写的时候也要尽量工整。政治是一门也得多也会有辛苦分的学科,常年使用电脑和手机的大家,在这最后几天里多多动笔,顺便练练字,在考试的时候就会有下笔如飞的感觉。

大数据的论文篇十四

一、12月15日进入火车票抢票高峰高铁占比超4成

众所周知,铁路向来是春运客运量最高的交通工具。相比去年,由于春运火车票只能提前30天购买,火车票抢票形势更加严峻。

如图所示,2016年春节提前一个月,旅客进入购票高峰。去哪儿网大数据预测,春节将至,2016年12月15日将进入旅客春运抢票高峰,此轮去程购票高峰将和去年一样,一直持续到春节前结束。

2016年春运,互联网售票量占总售票量的64.6%,占比超过一半,其中手机app发售车票1.5亿张,售票总量比例由去年的15.7%上升至39%。去哪儿网预测,生长在互联网时代的90后将是20春运的主力军。

在火车用户画像中,选择乘坐火车回家的男女比例分别为52.5%、47.5%,其中90后人群占比高达43%,80后人群为27.8%,两者占比超过70%,成为绝对的中坚力量。

近年春运,铁路最热门的出发地集中在北京、上海、成都、重庆和杭州。这些城市多属于超一线和新一线城市,外来人口集中,也是多条铁路线路的起始地。

一个显著的变化是,购买快速铁路车票的用户比例不断增加,选择乘坐高铁的人数占比达到了41.5%,选择乘坐城际铁路的'人群比例也达到了10.3%,整体超过了总数的一半。

去哪儿网大数据预测显示,乘坐上海出发的高铁线路人数最多,杭州、长沙、北京、广州的票量紧随其后。

与热门出发地相对应的,重庆、上海、杭州、成都、郑州是往年国内最热门的目的地。这些城市周边铁路、公路、航空线路密集,以此作为中转目的地的旅客也不在少数,抢票难度成几何倍数增加。

非高铁、城际等高速列车的出发地,北京最为热门。不过与高速列车热门出发地不同,紧随其后的重庆、昆明、西安、郑州出发的票量与北京之间相差并不多。

二、最难买航线已经进入抢票模式多数航班恢复全价

从2016年春运的大数据看,预定高峰期出现在距离春节20天,这一天的预订量创出近期以来的新高,与上个月同期环比增长100%。

大数据显示,2017年春运出发最集中的日期是2017年1月24日,已经进入了乘飞机回家旅客的人数峰值期,全国重要的机场将进入到繁忙状态。返程高峰则从大年初六即2017年2月2日开始。

三、85后成机票预订主力军天秤座成“空中飞人

移动互联网时代来临,网上购票已经成为消费者最便捷的预订方式。来自去哪儿网大数据显示,选择乘坐飞机回家的旅客男女比例相近,天秤座在12星座中乘坐比例为9.8%,力压群雄。

家乡越北,越会提前购买回家的机票。去哪儿网机票专家分析,排名前十名的航线,以大机场往小机场飞为主,每天的航班数多在30班以内,是北京至广州这种热门航线航班数的三分之一。

根据去哪儿网大数据统计,北京至佳木斯的航线,在众多热门航线中并不起眼,但订票时间却比其他航线早得多,堪称最难买航线。在去哪儿网平台预订过年前三天回家的机票中,北京至佳木斯这条航线,用户平均会提前36天。从深圳回海口更早,一般提前43天。

四、十条热门空中回家路出炉平均飞行1416公里

从热门航线看,北京-成都、深圳-重庆、上海-哈尔滨、北京-三亚、广州-重庆、深圳-成都、成都-北京、重庆-广州、北京-哈尔滨、上海-成都,这十条是往年最热门的空中回家路。

去哪儿网统计了往年春运返乡票量最高的50条航线,发现追逐梦想的人们,选择求业、求学城市距离家乡的平均飞行距离是1416.2公里,这几乎是从深圳到西安的里程。

通过去哪儿网平台订票的用户,大多选择在早上7点就坐上飞机,按照平均离家距离1416公里来计算,飞行时间近3个小时,98.8%的用户选择乘坐经济舱。

五、行李多礼物重专车成热门接送工具

春运期间,95%的旅客会有行李箱、背包以及各种礼品出行,为了能够快速到达机场、火车站,专车接送机/站成为热门出行工具。

去哪儿大数据显示,北京、成都、深圳、上海、三亚、广州、昆明、西安、哈尔滨、厦门等10个城市成为去哪儿接送机使用率最高的城市。

其中,在预约时间上看,男性一般提前在出发前3.5天-4.1天预订接送机服务;女性用户明显准备更加充分,其预约时间在4.1天-5.6天。

从出行时段上看,4点-11点为旅客乘车去机场、火车站高峰。其中5-6点出发人群最高,高达6.9%;10-11点又会出现小的高峰,出行占比为5.1%。数据显示,使用接送机/站的用户平均行驶27.2公里,平均时长为36分钟。

大数据的论文篇十五

12月8日消息,第一财经商业数据中心发布的《中国互联网消费生态大数据报告》显示,中国7.1亿网民将成为潜在的互联网消费者。

80后、90后消费观念大不同

报告显示,80后与90后作为互联网消费领域的核心消费人群,90后在线上拥有鲜明消费特征,主要的标签是娱乐至上、爱新鲜和个性化。90后在玩乐方面的兴趣广泛,既表现出对桌游、美食、夜生活的喜爱,也对二次元、游戏等虚拟领域有着更高的付费意愿。

相比较下,80后则更顾家,在互联网理财、互联网地产、电商等消费领域有显著的消费特征,是互联网消费的主力人群。从阅读内容方面看,80后更加偏爱看健身、旅游、时尚、房产等话题的资讯;购物方面看,80后也更偏爱大家电、汽车用品、童装等居家物品,由此可以看出,80后互联网消费者特征的关键词是家庭化、品质和资讯控。

网红借力电商成“吸金王”

今年电商和社交的融合成为一个典型现象。数据显示,红人经济的发展使得红人店铺的浏览成交高于一般女装店铺,近50%的粉丝有重复购买的行为,并且规模大的红人店铺比一般红人店铺转化率高出57%。可以看出电商红人的店铺具有粉丝粘性高、高浏览高转化以及销售爆发力强的优势。

便捷和品质成互联网消费核心诉求

移动互联网的渗透和众多新应用的兴起使得我国互联网消费生态不断孕育繁衍,消费者的需求也因此更加清晰细分,便捷与品质的诉求是两大明显特征。

报告提出,消费趋势的便捷主要体现在降低门槛、资源优化、服务整合和随时随地四个特性。以滴滴出行为例,滴滴优化夜间运力资源极大满足了人们夜间个性化出行的需求。数据显示,机场、火车站、餐饮等夜间交通资源不足的地方,使用滴滴出行的偏好度均呈现上升趋势,体现出网约车满足了消费者的`交通需求。

需求“品质化”则大大促进了商家运营发展轨迹的高端化、定制化、专业化和服务化。报告数据显示,从趋势上看,飞猪三年跟团游的增幅高于自由行的增幅,且跟团游中有近8成的订单数是当地游,可以看出组件式的“diy自由行”已成为了消费者旅游出行的新风尚,同时也反映了多元化的自由行产品为消费者提供了更丰富的定制体验。

大数据的论文篇十六

美国国家标准和技术研究院对大数据做出了定义:“大数据是指其数据量、采集速度,或数据表示限制了使用传统关系型方法进行有效分析的能力,或需要使用重要的水平缩放技术来实现高效处理的数据。”我们认为大数据价值链可分为:数据生成、数据采集、数据储存以及数据分析。数据分析是大数据价值链的最后也是最重要的阶段,是大数据价值的实现,是大数据应用的基础,其目的在于提取有用的值,提供论断建议或支持决策,通过对不同领域数据集的分析可能会产生不同级别的潜在价值。

虽然这些传统的分析方法已经被应用于大数据领域,但是它们在处理规模较大的数据集合时,效率无法达到用户预期,且难以处理复杂的数据,如非结构化数据。因此,出现了许多专门针对大数据的集成、管理及分析的技术和方法。

布隆过滤器:其实质是一个位数组和一系列hash函数。布隆过滤器的原理是利用位数组存储数据的hash值而不是数据本身,其本质是利用hash函数对数据进行有损压缩存储的位图索引。其优点是具有较高的空间效率和查询速率,缺点是有一定的误识别率和删除困难。布隆过滤器适用于允许低误识别率的大数据场合。

hash法,其本质是将数据转化为长度更短的定长的数值或索引值的方法。这种方法的优点是具有快速的读写和查询速度,缺点是难以找到一个良好的hash函数。

索引:无论是在管理结构化数据的传统关系数据库,还是管理半结构化和非结构化数据的技术中,索引都是一个减少磁盘读写开销、提高增删改查速率的有效方法。索引的缺陷在于需要额外的开销存储索引文件,且需要根据数据的更新而动态维护。

trie树:又称为字典树,是hash树的变种形式,多被用于快速检索,和词频统计。trie树的思想是利用字符串的公共前缀,最大限度地减少字符串的比较,提高查询效率。

并行计算:相对于传统的串行计算,并行计算是指同时使用多个计算资源完成运算。其基本思想是将问题进行分解,由若干个独立的处理器完成各自的任务,以达到协同处理的目的。

传统数据分析方法,大多数都是通过对原始数据集进行抽样或者过滤,然后对数据样本进行分析,寻找特征和规律,其最大的特点是通过复杂的算法从有限的样本空间中获取尽可能多的信息。随着计算能力和存储能力的提升,大数据分析方法与传统分析方法的最大区别在于分析的对象是全体数据,而不是数据样本,其最大的`特点在于不追求算法的复杂性和精确性,而追求可以高效地对整个数据集的分析。总之,传统数据方法力求通过复杂算法从有限的数据集中获取信息,其更加追求准确性;大数据分析方法则是通过高效的算法、模式,对全体数据进行分析。

[2]黄晓斌,钟辉新.基于大数据的企业竞争情报系统模型构建[j].情报杂志,20xx(03).

大数据的论文篇十七

(一)数据1.0时代

数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。

(二)数据2.0时代

2.0时代开始于20xx年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。

(三)数据3.0时代

又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。

随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。

(一)大数据时代消费者成为市场营销的主宰者

传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。

(二)大数据时代企业精准营销成为可能

在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。

(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”

传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。

京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的'规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的jdphone的计划。

jdphone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。

(一)数据分析要树立以人为本的思维

“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。

(二)正确处理海量数据与核心数据的矛盾

大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。

(三)整合价值链以共享数据的方式实现价值创造

单纯的企业内部数据已经无法满足今天市场上顾客多样性的需求,大数据的共享已经迫在眉睫。首先,可以通过扩展常规上下游渠道的数据。例如京东与上游供应商的合作。其次,与社会化媒体数据建立联系。社会化媒体数据是外围数据的一个重要来源。但是如果只是搜集并没有把数据与企业本身营销策略或者数据发布者建立联系,那么数据就没有发挥其应有的价值。最后,虚拟人脉交换获取数据。比如建立企业自媒体收获粉丝获取数据等。

[1]岳占仁.大数据颠覆传统营销[j].it经理世界,20xx,17.

[2]单华.大数据营销带给我国网络自制剧的思考――以《纸牌屋》为例[j].青年记者,20xx,26.

[3]魏伶如.大稻萦销的发展现状及其前景展望.辽宁大学新华国际商学院.

【本文地址:http://www.xuefen.com.cn/zuowen/3959506.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档