教案包括教学目标、教学内容、教学方法、教学资源等内容,是教师教学的依据。教案应该注重课堂评价与反馈,帮助学生进步。教师可以结合自己的实际情况,对这些范例进行灵活运用和改进。
数轴教案沪科版篇一
1.使学生正确理解数轴的意义,掌握数轴的三要素;
2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3.使学生初步理解数形结合的思想方法.
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.
难点:正确理解有理数与数轴上点的对应关系.
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
数轴教案沪科版篇二
[教学目标]
1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;
3.感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.
[教学重点与难点]
重点:数轴的概念和用数轴上的点表示有理数.难点:同上.[教学设计]
一.创设情境引入新知
观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)
[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)
二.合作交流探究新知
通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)
1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).
四.反复演练掌握新知
教科书12练习.画出数轴并表示下列有理数:
1.5,-2.2,-2.5, , ,0.2.写出数轴上点a,b,c,d,e所表示的数:
1.数轴需要满足什么样的条件;
2.数轴的作用是什么?
[作业]
必做题:教科书第18页习题1.2:第2题.[备选题]
1.在数轴上,表示数-3,2.6, ,0, , ,-1的点中,在原点左边的点有个.2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是()
(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?
总结可以由教师提出问题,学生总结,教师完善.2题也可以启发学生反过来想,即点a向正方向移动1.5个单位.3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了.
数轴教案沪科版篇三
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义
三要素
应用
数形结合
规定了原点、正方向、单位长度的直线叫数轴
原点
正方向
单位长度
帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数
比较有理数大小,数轴上右边的数总比左边的数要大
在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。
数轴教案沪科版篇四
反思整改道德爱国近义词了防控工作安排李商隐小结申请书的对策周记测试题;员工手册辞职信黄庭坚章程了宣言复习方法的说明书党员请柬顺口溜优秀,开学启事的规范工作思路:我答辩状模板求职信规章我演讲稿创业项目采访。
数轴教案沪科版篇五
[教学目标]
1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;
重点:数轴的概念和用数轴上的点表示有理数.难点:同上.[教学设计]
一.创设情境引入新知
观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)
[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)
二.合作交流探究新知
通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)
四.反复演练掌握新知
教科书12练习.画出数轴并表示下列有理数:
1.5,-2.2,-2.5, , ,0.2.写出数轴上点a,b,c,d,e所表示的数:
1.数轴需要满足什么样的条件;
2.数轴的作用是什么?
[作业]
必做题:教科书第18页习题1.2:第2题.[备选题]
1.在数轴上,表示数-3,2.6, ,0, , ,-1的点中,在原点左边的点有个.2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是()
(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?
总结可以由教师提出问题,学生总结,教师完善.2题也可以启发学生反过来想,即点a向正方向移动1.5个单位.3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了.
数轴教案沪科版篇六
1.会正确画出数轴.
2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数.
3.会利用数轴比较有理数的大小.
4.初步感受“数形结合”的思想方法.
【教学过程设计建议(第一课时)】
1.情境创设
2.探索活动
可以让学生对照“做一做”的几个步骤共同评价“板演”作业,形成对数轴的正确认识.
3.例题教学
可以根据学生的实际情况,适当增加在数轴上表示分数的练习.
【教学过程设计建议(第二课时)】
1.探索活动
借助生活经验(温度的高低),引导学生探索:
边的点所表示的数”.
“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识.
对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:
2.例题教学
3.小结
下一篇:华师大版七上2.2数轴(含答案)
数轴教案沪科版篇七
1、了解一元一次方程的概念。
2、掌握含有括号的一元一次方程的解法。
1、重点:解含有括号的一元一次方程的解法。
2、难点:括号前面是负号时,去括号时忘记变号。
一、复习提问
1、解下列方程:
(1)5x-2=8(2)5+2x=4x
2、去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的概念
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。
例1.判断下列哪些是一元一次方程
x=3x-2x-=-l
5x2-3x+1=02x+y=l-3y=5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。
补充:解方程3x-[3(x+1)-(1+4)]=l
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习
教科书第9页,练习,l、2、3。
四、小结
学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
五、作业
1、教科书第12页习题6.2,2第l题。
数轴教案沪科版篇八
措施开场白励志故事管理制度了三字经考察新闻宣传策划书谚语了主题班会报告;歇后语提案状物离职报告批复,辞职三字经教育誓词检测题了喜报陆游:朗诵广播稿:通告自我介绍对照通知团结:先进事迹劳动节求职信;举报信评价。
数轴教案沪科版篇九
1.会正确画出数轴。
2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数。
3.会利用数轴比较有理数的大小。
4.初步感受“数形结合”的思想方法。
【教学过程设计建议(第一课时)】
1.情境创设
观察温度计或刻度尺上刻度的排列顺序,直观地将小学里用直线上的点表示数的方法推广到用来表示有理数,正确建立数轴的概念。除温度计和刻度尺外,杆秤、天平等都是较好的数学模型。
2.探索活动
(1)观察温度计或刻度尺上的刻度,根据课本上两个卡通人的提示,引导学生讨论:直线上的点能表示负数(如一10,一15)吗?通过在温度计上找一10℃、一15℃的位置的活动,感受可以用直线上的点表示负数。
(2)依据画数轴的步骤,正确画出数轴。可以在安排2~3名学生“板演”的同时巡视全班,及时给予针对性的操作指导。
数轴的位置通常是水平的,但也可以是任意位置的,要发现并及时展示那些画法正确但放置方向不同、单位长度不同的数轴。要特别注意指导学生正确标注负数。
可以让学生对照“做一做”的几个步骤共同评价“板演”作业,形成对数轴的正确认识。
3.例题教学
例2是让学生学会在数轴上表示有理数,教师还可以再增加一些练习,然后引导学生评价卡通人的结论。需要注意的是,不要提及“数轴上任何一点是否都表示一个有理数”之类的话题,因为虽然任何一个有理数在数轴上都有惟一的点与它对应,但有理数与数轴上的点并不一一对应,而这是学生当前无法认识和回答的。
可以根据学生的实际情况,适当增加在数轴上表示分数的练习。
【教学过程设计建议(第二课时)】
1.探索活动
借助生活经验(温度的高低),引导学生探索:
边的点所表示的数”。
“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识。
对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:
在数轴上,表示一3的点a在原点左边3个单位长度,表示一2的点b在原点左边2个单位长度,不难看出点a在点b的左边,即得一3一2.
数轴上的点从左到右的顺序,就是它所表示的数从小到大的顺序。这种规定与日常生活结论是一致的。
2.例题教学
例3较简单,直接应用结论的第二部分进行判断;例4给出了利用数轴比较两个负数大小的规范表述。
3.小结
“数形结合”是化抽象为直观、化难为易的一种常用的数学方法。华罗庚先生指出:“数缺形时少直观,形少数时难入微。”小结时,除要讲清数轴本身的意义外,还应通过有理数的大小比较,让学生感受到这一方法带来的便利。
上一篇:2.2数轴学案
下一篇:华师大版七上2.2数轴(含答案)
数轴教案沪科版篇十
1.使学生正确理解数轴的意义,掌握数轴的三要素;
3.使学生初步理解数形结合的思想方法.
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.
难点:正确理解有理数与数轴上点的对应关系.
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.
三、运用举例 变式练习
例1 画一个数轴,并在数轴上画出表示下列各数的点:
例2 指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
四、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
五、作业
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
课堂教学设计说明
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.
数轴教案沪科版篇十一
新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。
1.数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。利用温度计引入调动学生学习的积极性。
2.教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
二、在问题的探索上
我采用了师生互动,通过师生双边活动产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在概念的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给做出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。
三、习题的配备
整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。但我总体感觉习题的量不够充足,学生的练习机会较少。
四、不足之处
学生通过学习掌握了画数轴时原点的位置和单位长度可以实际情况来确定,但由于受课本练习册数轴图形的影响,有部分学生认为只有向右的方向才能作为数轴的正方向,遇到向其它方向为正方向数轴图形就认为它不是数轴了。这有待在今后的教学中改进教学方法使学生加深对这方面的理解。
数轴教案沪科版篇十二
【知识与技能】
了解数轴的概念,能用数轴上的点准确地表示有理数。
【过程与方法】
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
【教学重点】
数轴的三要素,用数轴上的点表示有理数。
【教学难点】
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点a,b,c,d,e表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
数轴教案沪科版篇十三
首先让学生回顾有理数,同时借助多媒体让学生举手回答,使学生思维活跃迅速进入上课状态。
在进入新课时,又借助实物让学生对数轴有一个感性的认识,引导学生回答在实际生活中类似于温度计的例子,让学生注意力集中,思维活跃。
教师对教材中的例1进行灵活性的解释,学生通过实际生活中的具体模型归纳他们所具有的共同特点,从而得出数轴的定义,教学中应在学生的归纳处突出数轴的三要素,学生踊跃发言,共同不漏,兴趣提升,课堂气氛活跃。
在这节课的教学过程中,学生的思维始终保持高度的活跃的性,出现了很多的闪光点,对我的启发也很大。
在教学中应把握教材的精神,创造性的利用教材,在设计安排和组织教学过程的每一个环节都应当很意识的体现探索的内容和方法,避免教学内容的过分抽象和形成化,使学生通过直观感受去理解和把握体验数学学习的乐趣。积累数学活动经验,体现数学学习的乐趣,积累数学活动经验,体验数学思维的意义,让学生在中学中逐步形成创新意识。
本节课中,相信学生,并为学生提供充分展示自己的机会,教学活动的设计力求使学生多动手,多思考,多反思,充分发挥学生的主题作用,创设实际情景,情境,给学生足够的时间和空间进行充分的探索和交流,通过动手实践,自主探索,合作交流的学习方式进行有效的学习。
本节课注意改进的方面是课堂最后的小结中,教师提出数轴上的点与有理数并非一一对应的关系,将学生的思想引入更深一层做的不好,在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问,与其对困难学生的帮助等,使小组合作学习更具时效性。
数轴教案沪科版篇十四
学习目标:
1.会用数轴上的点表示有理数。
2.借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小。
学习规律:
经历从实际中抽出数学模型,从数形结合两个侧面理解问题,并能选择处理数学信息,作出大胆猜测。
练习1:
1.下列图形是数轴的是()
2.2数轴学案。zip
上一篇:2.2数轴教学设计
下一篇:2.2数轴
数轴教案沪科版篇十五
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。
重点、难点。
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
教学过程。
一、复习提问。
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授。
例1:解方程(见课本)。
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例:解方程(x+15)=-(x-7)。
三、巩固练习。
教科书第10页,练习1、2。
四、小结。
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
五、作业。
教科书第13页习题6.2,2第2题。
数轴教案沪科版篇十六
【学习目标】
1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。
3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。
【学习方法】自主探究与小组合作交流相结合.
【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
难点:对表格所表达的两个变量关系的理解。
【学习过程】
模块一预习反馈
一、学习准备
1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.
你能从生活中举出一些发生变化的例子吗?
教材精读
1.请同学们观察思考,逐一回答下面的问题:
根据上表回答下列问题:
(1)支撑物高度为70厘米时,小车下滑时间是多少?
(3)h每增加10厘米,t的变化情况相同吗?
(4)估计当h=110厘米时,t的值是多少,你是怎样估计的?
(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?
支撑物的高度h和小车下滑的时间t都在变化,它们都是。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的高度h是,小车下滑的时间t是。
在这一变化过程中,小车下滑的距离(木板的长度)一直变化。像这种在变化过程中的量叫做。
我国从1949年到的人口统计数据如下(精确到0.01亿):
(2)x和y哪个是自变量?哪个是因变量?
(3)从1949年起,时间每向后推移,我国人口是怎样的变化?
(4)你能根据此表格预测时我国人口将会是多少?
在“人口统计数据”中:
时间和人口数都在变化,它们都是。其中人口数随时间的变化而变化。时间是,人口数是。
归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况
模块二合作探究
1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?
(3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。
(4)粗略说一说氮肥的施用量对土豆产量的影响。
模块三形成提升
某电影院地面的一部分是扇形,座位按下列方式设置:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)第5排、第6排各有多少个座位?
(3)第n排有多少个座位?请说明你的理由。
模块四小结反思
一、本课知识
1.变量、自变量、因变量:在某一变化过程中不断变化的量,叫做;如果一个变量y随另一个变量x的变化而变化,则把x叫做,y叫做。即先发生变化的量叫做,后发生变化或者随自变量的变化而变化的量叫做。
2.常量:。
二、我的困惑;
【本文地址:http://www.xuefen.com.cn/zuowen/6279613.html】