实用有理数教案(案例20篇)

格式:DOC 上传日期:2023-11-03 04:40:09
实用有理数教案(案例20篇)
时间:2023-11-03 04:40:09     小编:XY字客

教案的编写过程需要反复修改和完善,确保教学设计的合理性和科学性。编写教案时,要注意评价方法的设计和使用,使学生能够得到及时反馈。深化教学改革的教案范文,推动教学工作不断创新。

有理数教案篇一

2.会运用乘法运算率简化乘法运算.

3.了解互为倒数的意义,并会求一个非零有理数的倒数。

学习难点:运用乘法运算律简化计算。

1、复习有理数的乘法法则(两个因数、两个以上的.因数),并举例说明。

2、在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?

观察下列各有理数乘法,从中可得到怎样的结论?

(1)(-6)(-7)=(-7)(-6)=。

(2)[(-3)(-5)]2=(-3)[(-5)2]=。

(3)(-4)(-3+5)=(-4)(-3)+(-4)5=。

3、请再举几组数试一试,看上面所得的结论是否成立?

交换律ab=ba。

结合律(ab)c=a(bc)。

分配律a(b+c)=ab+ac。

例1.计算:

(1)8(-)(-0.125)(2)。

(3)()(-36)(4)。

例2.计算。

(1)8(2)(4)()(3)()()。

观察例2中的三个运算,两个因数有什么特点?它们的乘积呢?你能够得到什么结论?

1.运用运算律填空.

(1)-2-3=-3(_____).

(2)[-32](-4)=-3[(______)(______)].

(3)-5[-2+-3]=-5(_____)+(_____)-3。

2.选择题。

(1)若a0,必有()。

aa0ba0ca,b同号da,b异号。

(2)利用分配律计算时,正确的方案可以是()。

ab。

cd。

3.运用运算律计算:

(5)(-4)(-18.36)(6)(-)0.125(-2)。

(7)(-+--)(-20);(8)(-7.33)(42.07)+(-2.07)(-7.33)。

通过本节课你学到了哪些知识?你达成学习目标了吗?

课本第42页习题2.5第3题。

数学评价手册。

有理数教案篇二

1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。

2、能力目标:培养学生探究思维能力和分析解决问题的能力。

3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。

难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算。

根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

附教学工具:温度计、投影仪、多媒体。

根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

1、复习有理数的加法法则,为新课的讲授作好铺垫。

2、(提问)用算式表示:与-3的和等于-10的数。

(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。

1、通过投影仪给出以下算式:

减法加法。

(+10)-(+3)=+7(+10)+(-3)=+7。

让学生比较上面这两个算式并讨论后得出:

(+10)-(+3)=(+10)+(-3)。

再给出以下算式:

减法加法。

(+5)-(+2)=+3(+5)+(-2)=+3。

继续让学生比较上面这两个算式并讨论后得出:

(+5)-(+2)=(+5)+(-2)。

2、讲解课本p80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。

文字叙述:减去一个数,等于加上这个数的相反数。

字母表示:a-b=a+(-b)(说明:简明的表示方法,体现字母表示数的优越性,实际运算时会更加方便)。

强调运用法则时:被减数不变,减号变加号,减数变成其相反数。

减数变号。

(减法============加法)。

4、通过例题教学使学生巩固方法,初步具备解决问题的能力。

例1.计算:(1)(-3)-(-5);(2)0-7。

说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。

让学生完成课本p82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。

(师生共同完成)。

本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b)。

通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。(六)板书设计:(略)。

有理数教案篇三

教学目的:

1、要求学生会进行有理数的加法运算;

2、使学生更多经历有关知识发生、规律发现过程。

教学分析:

重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

教学过程:

一、知识导向:

有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

二、新课:

1、知识基础:

其一:小学所学过的乘法运算方法;

其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:

(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

列式:

即:小虫位于原来出发位置的东方6米处

拓展:如果规定向东为正,向西为负

列式:

即:小虫位于原来出发位置的西方6米处

概括:把一个因数换成它的相反数,所得的积是原来的积的'相反数

3、设疑:

如果我们把中的一个因数2换成它的相

反数-2时,所得的积又会有什么变化?

当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数与零相乘,都得零。

例:计算:

(1)(2)

三、巩固训练:

p52.1、2、3

四、知识小结:

本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

五、家庭作业:

p57.1、2,3

六、每日预题:

1、小学多学过哪些乘法的运算律?

2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

有理数教案篇四

1、要求学生会进行有理数的加法运算;

2、使学生更多经历有关知识发生、规律发现过程。

重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

一、知识导向:

有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

二、新课:

1、知识基础:

其一:小学所学过的乘法运算方法;

其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:

(引例)一只小虫沿一条东西向的`跑道,以每分钟3米的速度爬行。

列式:

即:小虫位于原来出发位置的东方6米处

拓展:如果规定向东为正,向西为负

列式:

即:小虫位于原来出发位置的西方6米处

概括:把一个因数换成它的相反数,所得的积是原来的积的相反数

3、设疑:

如果我们把中的一个因数2换成它的相

反数-2时,所得的积又会有什么变化?

当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数与零相乘,都得零。

例:计算:

(1)(2)

三、巩固训练:

p52.1、2、3

四、知识小结:

本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

五、家庭作业:

p57.1、2,3

六、每日预题:

1、小学多学过哪些乘法的运算律?

2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

有理数教案篇五

在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想(2)培养学生严谨的思维品质。

根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2.通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力。

(一)重点、难点分析。

(二)教法建议。

2.关于“去括号法则”,只要学生了解,并不要求追究所以然.。

3.任意含加法、减法的算式,都可把运算符号理解为数的`性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7应变成12+7-5,而不能变成12-7+5。

备注:教学过程我主要说第一小节---去括号。

本节课的教学设计环节:

教学环节教学活动设计设计说明。

提出问题,创设情景把以下数相加、相减。

1、+4,-5,+3,-6,-7,3,-2.5。

2、-3.2,-2.6,+5,+6,-4在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)。

尝试指导,实施目标从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)。

题型训练,巩固目标1、两数加减:+3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)。

-(-7)+(-2.3)-(-5.1)+(-3)此处要反复练习,并使学生明白去括号后的是省略加号的和式。

鼓励学生积极发言,增进师生、生生之间的交流、互动.。

形成性测试,检测目标1、做书18、20、23、24页练习题(只去括号)。

2、利用书上习题1.3复习巩固1、2题的双数题进检测把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。

有理数教案篇六

1、理解加减法统一成加法运算的意义。

2、会将有理数的加减混合运算转化为有理数的加法运算。

3、培养学习数学的`兴趣,增强学习数学的信心。

讲练相结合。

一、学前准备。

1、一架飞机作特技表演,起飞后的高度变化如下表:

高度的变化上升4。5千米下降3。2千米上升1。1千米下降1。4千米。

记作+4。5千米3。2千米+1。1千米1。4千米。

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米。

2、你是怎么算出来的,方法是。

二、探究新知。

1、现在我们来研究(20)+(+3)(5)(+7),该怎么计算呢?还是先自己独立动动手吧!

2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。

如:(—20)+(+3)—(—5)—(+7)有加法也有减法。

=(—20)+(+3)+(+5)+(—7)先把减法转化为加法。

=—20+3+5—7再把加号记在脑子里,省略不写。

可以读作:负20、正3、正5、负7的或者负20加3加5减7。

4、师生完整写出解题过程。

三、解决问题。

1、解决引例中的问题,再比较前面的方法,你的感觉是。

2、例题:计算—4。4—(—4)—(+2)+(—2)+12。4。

3、练习:计算1)(7)(+5)+(4)(10)。

三、巩固。

1、小结:说说这节课的收获。

2、p241、2。

3、计算。

1)2718+(7)322)。

四、作业。

1、p2552、p26第8题、14题。

有理数教案篇七

(1)正确理解乘方、幂、指数、底数等概念。

通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。

培养探索精神,体验小组交流、合作学习的重要性。

教学重、难点与关键。

1.重点:正确理解乘方的意义,掌握乘方运算法则。

2.难点:正确理解乘方、底数、指数的概念,并合理运算。

3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。

1.几个不等于零的有理数相乘,积的符号是怎样确定的?

几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。

2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?

边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.

aa简记作a2,读作a的平方(或二次方)。

aaa简记作a3,读作a的立方(或三次方)。

一般地,几个相同的因数a相乘,记作an.即aaa.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

有理数教案篇八

学习目标:。

3、经历探索有理数乘方的运算,获得解决问题经验.

学习难点:幂、底数、指数的概念极其表示。

教学方法:观察、归纳、练习。

教学过程。

一、学前准备。

1、看下面的故事:从前,有个聪明的乞丐他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!

请你们交流讨论,再算一算,如果把整块面包看成整体1,那第十天他将吃到面包.

2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.

二、合作探究。

1、分小组合作学习p41页内容,然后再完成好下面的问题。

1)叫乘方,叫做幂,在式子an中,a叫做,n叫做.

2)式子an表示的意义是。

3)从运算上看式子an,可以读作,从结果上看式子an,可以读作.

有理数教案篇九

2、经历探索有理数加法法则的过程,理解有理数加法法则;

3、感受数学模型的思想;

4、养成认真计算的习惯。

【对话探索设计】。

〖探索1。

1、第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?

2、第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?

假设原点为运动起点,用数轴检验你的答案、

〖法则理解。

有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________。

这条法则包括两种情况:

(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;

〖探索2。

2、第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?

3、正数和负数相加,结果是正数还是负数?

〖法则理解。

例如(+6)+(―2)=+(6―2)=+4、答案+4之所以取+号,是因为两个加数(+6与―2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到。

〖议一议。

有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算、他说的对不对?

〖练习。

2、如果物体先向右运动5米,再向右运动―8米,那么两次运动后总的结果是什么?

3、检查3包洗衣粉的重量(单位:克),把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

―3.5,+1.2,―2.7。

这3包洗衣粉的重量一共超过标准重量多少?

4、仿照(―8)+(+3)=―(8―3)=―5的格式解题:

(1)(―3)+(+8)=。

(2)―5+(+4)=。

(3)(―100)+(+30)=。

(4)(―100)+(+109)=。

〖法则理解。

有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____。

有理数教案篇十

2、经历探索有理数加法法则的过程,理解有理数加法法则;

3、感受数学模型的思想;

4、养成认真计算的习惯。

【对话探索设计】。

〖探索1。

1、第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?

2、第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?

假设原点为运动起点,用数轴检验你的答案、

〖法则理解。

有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________。

这条法则包括两种情况:

(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;

〖探索2。

2、第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?

3、正数和负数相加,结果是正数还是负数?

〖法则理解。

例如(+6)+(―2)=+(6―2)=+4、答案+4之所以取+号,是因为两个加数(+6与―2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到。

〖议一议。

有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算、他说的对不对?

〖练习。

2、如果物体先向右运动5米,再向右运动―8米,那么两次运动后总的结果是什么?

3、检查3包洗衣粉的重量(单位:克),把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

―3.5,+1.2,―2.7。

这3包洗衣粉的重量一共超过标准重量多少?

4、仿照(―8)+(+3)=―(8―3)=―5的格式解题:

(1)(―3)+(+8)=。

(2)―5+(+4)=。

(3)(―100)+(+30)=。

(4)(―100)+(+109)=。

〖法则理解。

有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____。

例如(+3)+(―3)=______,(―108)+(+108)=______。

有理数教案篇十一

1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.

2、能力目标:能应用正负数表示生活中具有相反意义的量.

3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点

重点:理解有理数的意义.

难点:能用正负数表示生活中具有相反意义的量.

一、创设情境、提出问题

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.

二、分析探索、问题解决

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题.

讲授正数、负数、有理数的定义.

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.

三、巩固练习

1、用正数或负数表示下列各题中的数量:

(2)球赛时,如果胜2局记作+2,那么-2表示______;

(3)若-4万表示亏损4万元,那么盈余3万元记作______;

(4)+150米表示高出海平面150米,低于海平面200米应记作______.

2、下面说法中正确的是().

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

三、小结回顾、纳入体系

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数.

分类:有理数的分类:两种分法.

应用:有理数可以用来表示具有相反意义的量.

有理数教案篇十二

使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反意义的量。

2.能力目标。

3.思想目标。

对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。

本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。

正、负数的意义,

负数的意义及0的内涵。

鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。

有理数教案篇十三

教学目标:

1、知识与技能。

会比较两个(或几个)有理数的大小。

2、过程与方法。

通过具体实例,抽象出比较两个有理数大小的方法。利用数轴,会比较几个有理数的大小,进一步培养学生数形结合的数学思想方法,提高学生学习兴趣。

重点、难点:

1、重点:掌握有理数大小的比较法则。

2、难点:比较两个负数的大小。

教学过程:

一、创设情景,导入新课。

1、数轴包括哪几个要素?怎么画?

2、大于0的数在数轴上位于原点的哪一侧?小于0的数呢?

3、问:如何比较两个正数的大小?

(1)珠穆朗玛峰与吐鲁番盆地,问:哪个地方高?

(2)温度计示意图:-3℃与5℃哪个温度高?

上述两个问题,实际是比较8844.43与-155的大小,以及5与-3的大小,像这样的问题实际上是比较两个有理数在大小(板书课题)。

二、合作交流,解读探究。

1、(出示两个不同温度的温度计挂图)在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边,5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃。

下面的结论引导学生把温度计与数轴类比,自己归纳出来:

(1)在数轴上表示的两个数,右边的数总比左边的`数大.

(2)正数都大于零,负数都小于零,正数大于负数。

例1、在数轴上画出表示下列各数的点,并用把它们连接起来。

4.5,6,-3,0,-2.5,-4。

通过此例引导学生总结出正数都大于0,负数都小于0,正数大于一切负数的规律.要提醒学生,用连接两个以上数时,小数在前,大数在后,不能出现54这样的式子.

2、利用数轴我们已经会比较有理数的大小。

由上面数轴,我们可以知道-40.43,其中-4,-3都是负数,它们的绝对值哪个大?显然3|引导学生得出结论:

两个正数比较,绝对值大的数大;。

两个负数比较,绝对值大的反而小。

这样以后在比较负数大小时就不必每次再画数轴了。

三、应用迁移,巩固提高。

例2(p16例)、比较下列每一结数的大小。

1、-100与0.01;2、-100与-33、与。4、-(-0.2)与。

学生活动:在练习本上解答。

教师活动:让学生各自独立思考,然后请三名学生到黑板上分别解答,待学生解答完后,再请全班学生交流讨论其正确性。

解:1、-100。

2、因为=100,=3,而1003,所以-100。

3、=0.667,==0.6,而0.6670.6,所以。

练习:课本p17练习第1、2。习题1.3a第1题。

四、总结反思。

先由学生叙述比较有理数大小的两种方法利用数轴比较大小和利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了:正数大于一切负数;两个负数,绝对值大的反而小。

五、作业。

课本p17习题1.3a第2、3、题。p18b第5题。

备选拓展。

1、.若a是正整数,且,符合条件的a有()个。

a6b5c4d3e2。

2、(1)整数x满足3,则x=___________________,。

(2)负整数x满足,则x=___________________。

3有人说2个多于1个,因此2aa,你认为对吗?为什么?

有理数教案篇十四

使学生会使用计算器进行有理数的加减运算.

尝试从不同角度寻求解决问题的方法,并能有效地解决问题.

有克服困难和运用知识解决问题的成功体验.

重点:记清计算器中常用功能键的用法,多进行实际操作,逐步熟悉计算器的用法.

难点:准确地用计算器进行加减运算.

引导 使用计算器、电子计算器,简称计算器,具有运算快,操作简便,体积小,功能多等特点,既可帮助我们进行各种复杂的数学计算,还可以帮助我们理解数学概念,有时计算器还可以编程序或绘制各种图形.在信息高速发展的时代,它已成为人们广泛使用的计算工具。

有理数教案篇十五

在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。 就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想 (2)培养学生严谨的思维品质。

根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2. 通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力。

(一)重点、难点分析

(二)教法建议

2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。

备注:教学过程我主要说第一小节---去括号

本节课的教学设计环节:

教学环节 教学活动设计 设计说明

提出问题,创设情景 把以下数相加、相减

1、+4,-5,+3,-6,-7,3,-2.5

2、-3.2,-2.6,+5,+6,-4 在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)

尝试指导,实施目标 从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)

题型训练,巩固目标1、两数加减:+3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)

-(-7)+(-2.3)-(-5.1)+(-3) 此处要反复练习,并使学生明白去括号后的是省略加号的和式。

鼓励学生积极发言,增进师生、生生之间的交流、互动.

形成性测试,检测目标 1、做书18、20、23、24页练习题(只去括号)

2、利用书上习题1.3复习巩固1、2题的双数题进检测 把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。

有理数教案篇十六

使学生会使用计算器进行有理数的加减运算.

尝试从不同角度寻求解决问题的方法,并能有效地解决问题.

有克服困难和运用知识解决问题的成功体验.

重点:记清计算器中常用功能键的用法,多进行实际操作,逐步熟悉计算器的用法.

难点:准确地用计算器进行加减运算.

引导使用计算器、电子计算器,简称计算器,具有运算快,操作简便,体积小,功能多等特点,既可帮助我们进行各种复杂的数学计算,还可以帮助我们理解数学概念,有时计算器还可以编程序或绘制各种图形.在信息高速发展的.时代,它已成为人们广泛使用的计算工具。

有理数教案篇十七

3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.。

教学建议。

(一)重点、难点分析。

(二)知识结构。

(三)教法建议。

有理数教案篇十八

知识与能力:

1.使学生理解有理数的加减法法可以互相转化。2.使学生熟练地进行有理数的加减混合运算。

过程与方法:

1.体会有理数的加减法法可以互相转化的思想。2.培养学生的运算能力。

情感态度与价值观:

培养学生认真、仔细的良好学习态度。

重点准确迅速地进行有理数的加减混合运算。

教材提示:

本节课是学习有理数减法的第二课时,在教学过程中,教师应该首先通过探究的方式组织学生分组讨论,借助于已有知识,体会有理数的加减法法可以互相转化的思想,如何省略加号,并且还要正确掌握省略加号后它们表示的是哪些数的和,强化混合运算的准确性。

教学过程

(二)、导学练习 [活动1]:学生课前自主完成。 1.减法法则: ,用字母表示为:

2.计算(1)1-5= (2)8-11= (3)6-9=

(4)9-(-9)= (5)(- )-(- )=

[活动2]:学生先课前自主,然后在课堂上一起和大家交流讨论。

2、一20十3十(十5)十(一7)(读作 , , , 的和 ) 3、 计算:(一20)十(十3)一(一5)一(十7). 注意:在进行有理数混合运算时,应该先将减法按规则统一成加法后再计算;第一个数前面的一常用括号括起来,但熟练后,第一个数带负号时,通常可以不用括号手起来。 4、 计算在做有理数运算时,易出 符号错误。

计算:(1)(一5)一(一4)一(十1)=(一5)十(一4)十(十1)

=(一9)十(十1) =一8

(2)(一7)一(十4) 十(一8)十(一3)一(一8) =一7十4一8一3一8 =一22. 以上两个小题均有错误,指出错在哪里,并改正。 [学法指导:有理数混合运算,只有将减法按规则统一成加法后,才能省略加号,而减号不能省略。在有理数加减混合运算中,当我们把减法转化为加法时,为了书写简便,常常省略加号和括号。] 5、分别指出下列两个式子的读法,表示那些数的和,并计算: (1)8一7十4一6 (2)(一8)一(十4)十(一7)一(十9)。

(三)自学疑难摘要:

自主学习小组长检查等级 等,组长签字

计算:1、-5+3-2 +6+7-8-9; 2、-0.5-(-3 )+2.75-(+7 )

3、 4、

1、每个同学自主完成二中的练习后先在小组内交流讨论。 2、每个组根据分配的任务把自己组的结论板 书到黑板上准备展示。 3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

有理数教案篇十九

一、教学目标:

知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。

过程与方法:通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

二、教学重点:运用有理数的减法法则,熟练进行减法运算。

三、教学难点:理解有理数减法法则。

四、教材分析:本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。

五、教学方法:师生互动法。

六、教具:幻灯片。

七、课时:1课时。

八、教学过程:

1、计算(口答):

(1)1+(-2)。

(2)-10+(+3)。

(3)+10+(-3)。

2、出示幻灯片二:

如图:

教师引导观察。

教师总结:这就是我们今天要学习的内容(引入新课,板书课题)。

1、师:谁能把10-3=7这个式子中的性质符号补出来呢?

(+10)-(+3)=7。

再计算:(+10)+(-3),师让学生观察两式结果,由此得到:

(+10)-(+3)=(+10)+(-3)。

观察减法是否可以转化为加法计算呢?是如何转化的呢?

(教师发挥主导作用,注意学生的参与意识)。

2、再看一题:

计算:(-10)-(-3)。

问题:计算:(-10)+(+3)。

教师引导,学生观察上述两题结果,由此得到。

(-10)-(-3)=(-10)+(+3)。

教师进一步引导学生观察式子,你能得到什么结论呢?

教师总结:由以上两式可以看出减法运算可以转化成加法运算。

教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?

教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。

强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)。

3、例题讲解:

出示幻灯片三(例1和例2)。

例1计算:

(1)6-(-8)。

(2)(-2)-3。

(3)(-2.8)-(-1.7)。

(4)0-4。

(5)5+(-3)-(-2)。

(6)(-5)-(-2.4)+(-1)。

教师板书做示范,强调解题的规范性,然后师生共同总结解题步骤,(1)转化(2)进行加法运算。

师巡视指导,最后师生讲评两个学生的解题过程。

课后练习1、2。

教师巡视指导。

师组织学生自己编题。

1、谈谈本节课你有哪些收获和体会?[。

2、本节课涉及的数学思想和数学方法是什么。

教师点评:有理数减法法则是一个转化法则,要求同学们掌握并能应用进行计算。

课堂检测(包括基础题和能力提高题)。

1、-9-(-11)。

2、3-15。

学生思考后抢答,尽量照顾不同层次的学生参与的积极性。

学生观察思考如何计算。

学生观察思考。

互相讨论。

学生口述解题过程。

由两个学生板演,其他学生在练习本上做。

第1小题学生抢答。

第2小题找两个学生板演。

学生回答。

学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。

综合考查学以致用。

既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础。

创设问题情境,激发学生的认知兴趣。

让学生通过尝试,自己认识减法可以转化为加法计算。

学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力。

可以培养学生严谨的学风和良好的学习习惯,同时锻炼学生的表达能力。

可以照顾不层次的学生,调动学生学习积极性。

通过练习让学生进一步巩固新知,体验知识的应用性。

能增强学生学习的主动性和参与意识。

学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。

锻炼学生综合运用知识,独立解题的能力。

板书设计:

(+10)-(+3)=(+10)+(-3)。

(-10)-(-3)=(-10)+(+3)。

减去一个数等于加上这个数的相反数.例1:

例2:。

练习:

教学反思:

本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。

有理数教案篇二十

2、会作简单的加法计算;

3、感受到原来用减法算的问题现在也可以用加法算、

【对话探索设计】。

〖探索1〗。

(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨。

(4)把第(3)题的算式列为300+(―200),有道理吗。

(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨。

〖探索2〗。

如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么。

假设原点为运动起点,用下面的数轴检验你的答案、

〖小游戏〗。

〖补充作业〗。

1、分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):

(1)温度由下降;(2)仓库原有化肥200t,又运进―120t;

(3)标准重量是,超过标准重量;(4)第一天盈利―300元,第二天盈利100元、

2、借助数轴用加法计算:

(1)前进,又前进,那么两次运动后总的结果是什么。

(2)上午8时的气温是,下午5时的气温比上午8时下降,下午5时的气温是多少。

3、某潜水员先潜入水下,他的位置记为、然后又上升,这时他处在什么位置。

【本文地址:http://www.xuefen.com.cn/zuowen/7054216.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档