植树问题教案(通用20篇)

格式:DOC 上传日期:2023-11-11 20:05:07
植树问题教案(通用20篇)
时间:2023-11-11 20:05:07     小编:笔舞

编写教案要综合考虑学生的认知特点、学习步骤和知识结构等因素。此外,教师还可以借鉴先进的教学理念和教学模式,提升自己的教学水平。以下是一些教育专家推荐的教案样例,有助于提高教学效果。

植树问题教案篇一

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

理解“植树问题(两端要种)”的`特征,应用规律解决问题。

理解“间距数+1=棵数,棵数-1=间距数。

一、设计情景、引入课题。

1、教学“间隔”的含义。

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)。

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)。

3、理解间隔数,引入课题。

在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)。

二、探索新知,探究规律。

1、出示招聘启事。

在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

2、出示例题,理解题意:

师:(课件出示例题。)。

(课件解释关键词语,加深学生理解)。

师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

3、出示合作要求。

(1)教师讲解小组合作要求。

(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可以用不同的形式表达)。

(3)教师巡视,指导学生小组合作。

(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

4、以小组为单位探究棵数与间隔数间的关系:

(1)数一数:数出棵数和间隔数。

(2)比一比:比较出棵数和间隔数之间的规律。

两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

三、课堂小结、反馈练习。

1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

植树问题教案篇二

人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的.能力。

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

课件、表格、尺子等。

一、教学“间隔”

1.教学“间隔”的含义。

师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

二、自主探究找出规律。

预设:学生可能大多数对得到20棵。

师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

全班交流汇报。(重点让用线段图来验证的小组来说明理由。)。

师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

根据学生的回答,师填写表格:

总长(米)。

20。

全班观察表格寻找规律。

师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)。

师:对得到的这个规律有没有不同意见?

三、巩固练习。

师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

(1)基础练习。

师:请看题目,谁愿意来说一说?

a2.如果是每隔10米栽一棵呢?(口答)。

c.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

(2)拓展练习。

师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑。想听听它的钟声吗?

课件出示解放碑的大钟及题目。

解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

师:请同学们独立的在练习本上完成。

小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

四、数学文化。

介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

五、全课总结。

1.通过这节课的学习你有什么收获?

2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

植树问题教案篇三

学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

植树问题教案篇四

多媒体。

设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

植树问题教案篇五

本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第2课时,是探讨关于一条线段并且两端都不栽的情况。

“两端都不栽”与“两端都栽”的区别是比较明显的,可以借助线段图帮助学生建立两者的表象,再正确建立数学模型。

1、建立“树的棵数=间隔数-1”的数学模型;能利用数学模型解决简单的实际问题。

2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

3、 体会数学模型的生活意义与作用,体验到学习的喜悦。

学习重点:建立“树的棵数=间隔数-1”的数学模型。

学习难点:“两端都不栽”与“两端都栽”有什么联系与区别。

在一条12路的一侧种树(两端都种),每2米种一棵,共需种几棵?

1、揭题:植树问题。

2、呈现问题,请学生解决。新课标第一

3、反馈解法,强调“两端都种”与“间隔数+1”。

在一条12路的一侧种树(两端都不种),每2米种一棵,共需种几棵?

1、提出研究课题:要是两端都不种呢?

2、呈现问题,请学生思考后试解。

3、反馈解法,强调“两端都不种”与“间隔数-1”。

4、比较:“两端都种”与“两端都不种”有什么不同?

1、画示意图,完成p118例2,注意“两端都不种”与“两旁都种”。

2、画示意图,完成做一做1,注意“两端都种”与“两旁都种”。

3、画示意图,完成做一做2,发现“锯的次数=段数-1”。

4、完成补充题,知道“四层楼三个间隔”。

植树问题教案篇六

植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

1.知识与技能性:利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。 了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系。通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。 能够借助图形,利用规律来解决简单植树的问题。

2.过程与方法:进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。 渗透数形结合的思想,培养学生借助图形解决问题的意识。 培养学生的合作意识,养成良好的交流习惯。

3.情感态度与价值观 :通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

引导探究、发现两端都栽时棵数与间隔数之间关系。

运用棵数与间隔数之间的关系,解决逆向思维的实际问题。

植树问题虽然是日常生活中常见的生活现象,但对四年级的学生还是有很大的难度。美国教育家杜威说过:教育不是告知和被告知的事情,而是学生主动性建设的过程。因此教学中我让学生在动手实践中找方法--在方法中找规律在规律中学应用。

一、创设情境,引入课题

1.我以学生的小手为载体引入本课

2.3月12日植树节对学生进行环境教育。

通过创设生动有趣的情境,激发学生的求知欲望,顺利过渡到第二个环节。

二、探索规律建立模型

指导学生读题

1.从题目你们知道了什么?(说一说)

2.题目中每隔5米栽一棵是什么意思?

3.题目中有什么地方要提醒大家的吗?(一边,两端要栽)

4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。

5.交流。

6.反馈。

(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

(2)学生分别说想法。使学生明确:间隔数+1=棵数。

三、巩固练习实际应用

在这一环节我还原例1,让学生解决

四、回顾整理反思提升

每隔5米种一棵(两端都种)

路长(米) 画一画 间隔数 棵数

(1)反馈交流:可以种几棵?你是怎么种的?

(2)观察比较表格中的数据,有什么发现?小组内交流自己的发现。

(3)全班交流汇报,引导学生概括规律(板书规律)。

两端都种时: 棵数=间隔数+1

间隔数=总长间隔

2、我会算,设计两旁都要栽的'练习。出示119页做一做

3、智力大比拼,通过两端都要栽的情况顺理成章地使其明白另外两种植树问题。联系生活,完善建构。

(1)感知植树问题的三种模型。

看课件三种情况。(两端种、两端都不种、一端不种)

(2)想一想,生活中有类似这样的植树问题吗?请举例说一说!

课件出示例2(两端不种)

(4)在全长20xx米的街道两旁安装路灯(两端也要装)。每隔50米安一座,一共要安装多少座路灯? 指名读题,引导学生理解题意后独立解题。教师追问思考过程。

五、回顾整理反思提升

1、谈谈这节课的收获。

2、只要我们细心观察,生活中还有更多更有挑战性的问题等着我们去解决,比如小朋友们排队,如果排成个圈儿,棵数与间隔数之间会藏着怎样的秘密呢?就留给大家课后去思考吧!

植树问题教案篇七

学习目标:

1.探讨封闭曲线中的植树问题。

2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法。

3.在小组合作交流过程中,学会从不同角度思考问题。

学习过程:

一、自主探究。

例3:张伯伯准备在圆形池塘周围。

栽树。池塘的周长是120m,

如果每隔10m栽一棵,一共。

要栽多少棵树?

1.分析:这个问题和前面学的有什么不一样?

2.思考:你想用什么方法来研究这个问题?

3.出示表格。

4.我可以把,我的发现是。

可以独立完成,也可以小组合作完成。

二、课堂达标。

1.填一填。

(1)学校运动场的跑道一圈长400米,在内侧每隔10米插一面彩旗,一共可以插()面彩旗。

(2)正六边形的花圃每边有3盆花,顶点都有花,共有()盆花。

(3)同学们进行体操表演,48人围成正方形,4个顶点都有人,每边各有()名同学。

2.判一判。

(1)一个方阵,最外层每边8人,最外层一共8×8=64(人)()。

(2)在五边形水池边摆花盆,每边放4盆,最少需要15盆。()。

(3)时钟3时敲3下用2秒,4时敲4下用4秒。()。

三、知识拓展。

一条项链长60cm,每隔5cm有一颗水晶。这条项链上共有多少颗水晶?

植树问题教案篇八

人教版五年级上册数学第七单元数学广角植树问题。

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

理解“植树问题(两端要种)”的特征,应用规律解决问题。

理解“间距数+1=棵数,棵数-1=间距数。

1、教学“间隔”的含义。

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)。

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)。

3、理解间隔数,引入课题。

在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)。

1、出示招聘启事。

在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

2、出示例题,理解题意:

师:(课件出示例题。)。

(课件解释关键词语,加深学生理解)。

师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

3、出示合作要求。

(1)教师讲解小组合作要求。

(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可。

以用不同的.形式表达)。

(3)教师巡视,指导学生小组合作。

(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

4、以小组为单位探究棵数与间隔数间的关系:

(1)数一数:数出棵数和间隔数。

(2)比一比:比较出棵数和间隔数之间的规律。

两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

植树问题教案篇九

借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。

(1)学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。

(2)学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。

(1)能运用所得到的规律解决实际问题。

(2)能和他人合作交流。

(1)能积极参与数学活动,对数学有好奇心和求知欲。

(2)在数学学习过程中,体验获得成功的乐趣,建立自信心。

(3)感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。

植树问题教案篇十

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

理解“植树问题(两端要种)”的特征,应用规律解决问题。

理解“间距数+1=棵数,棵数-1=间距数。

1、教学“间隔”的含义。

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)。

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)。

3、理解间隔数,引入课题。

在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)。

1、出示招聘启事。

在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

2、出示例题,理解题意:

师:(课件出示例题。)。

(课件解释关键词语,加深学生理解)。

师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

3、出示合作要求。

(1)教师讲解小组合作要求。

(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可。

以用不同的形式表达)。

(3)教师巡视,指导学生小组合作。

(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

4、以小组为单位探究棵数与间隔数间的关系:

(1)数一数:数出棵数和间隔数。

(2)比一比:比较出棵数和间隔数之间的规律。

两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

植树问题教案篇十一

【教学内容】:

人教版四年级下册第120页第八单元例3。

【教材分析】。

本次教学内容属于第二学段中“实践与综合应用”领域的教学。

“课标”中要求这部分内容教学时,“应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。”同时建议“数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步激发学生的学习兴趣”。

根据课标的要求,又考虑到前两个例题都是围绕植树这一情境展开的,因此我将教学内容由“围棋盘的最外层每边都能放19个棋子,求围棋盘最外层一共可以摆多少个棋子”的问题改为为学校设计花坛,在古柳周围正方形台面上摆花。激发学生学习兴趣的同时培养学生为学校贡献力量的集体主义意识。

【学情分析】。

学生已经初步接触了植树问题,会解决在一条线段中的植树问题,了解了栽的棵数与间隔数的关系。本课主要研究封闭图形上的植树问题,如何让学生建立起封闭植树和线段植树的联系,在头脑中建立解决此类问题的模型是教学的重点。

学生对动手操作、自主设计等教学活动比较感兴趣,因此我创设了为学校设计花坛的情境,设计了自主探究、小组合作等教学环节,来调动学生学习的积极性。

【教学目标】。

1.利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

2.通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

3.在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的`广泛应用。

【教学重、难点】。

教学重点:让学生掌握解决封闭图形植树问题的思维方法。

教学难点:探索发现封闭图形情况下棵树与间隔数之间的关系。

【教学设想】。

本次教学内容为请学生扮演设计师角色为学校设计不同形状的花坛,学生对此内容感兴趣,对动手设计等教学环节比较感兴趣,课堂气氛应非常活跃。学生在思维的碰撞中能够自主探究出封闭图形中植树问题的解题方法,并从中发现问题中存在的一般规律。最终达到能运用知识解决实际问题的目的。

【教学过程】。

一、创设情景,引入问题。

1.播放花坛中由鲜花拼摆出的不同形状的图案,学生欣赏图片,从中感受到鲜花排列的整齐特点。

2.进而教师提问:想不想用鲜花设计属于自己的花坛?今天这节课大家就来设计一个自己喜爱的花坛来装饰校园。

4.组织学生反馈::9÷1+1=10盆。

小结:同学们用以前学习的植树问题帮老师解决了这个数学问题。

预设生1:40盆,生2:36盆。

5.提出建议:到底是36盆还是40盆,要知道哪个答案是对的,老师建议大家用画一画的方法来验证一下到底是需要多少盆。

二、多元表征,感知模型。

1.出示学习建议:

(1)请利用老师提供的材料,在纸上画一画,圈一圈。并写出算式。(花盆可以用符号表示)。

(2)画好后先独立思考,再在小组中说一说你的方法。

2.组织反馈:你是怎么想的?由学生介绍自己的想法和列式。(先把学生的四种方法都用投影展示出来,再讲评每一种方法)。

3.回顾方法:刚才我们这四种方法解决了问题。(课件动态演示)。

小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

三、探索规律,有效建模。

1.延续情境,提出问题:除了给古柳树周围正方形的台面摆鲜花外,学校还想再建一个大花坛,其中需要把红色太阳花摆在三角形台面上(每边6盆),把粉色的月季花摆在六边形的台面上(每边4盆),请你算一算各需要多少盆。)。

每边6盆,一共要多少盆?每边4盆,一共要多少盆?

2.组织反馈:你是怎么算的?(结合图说明算式的意思)。

学生利用材料自主探索。

5.组织交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?你还有什么新的发现?(投影展示学生的设计方案,引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)。

小结:花盆数=间隔数。

(1)学生利用材料自主探索。

(2)组织交流反馈。

(3)动态演示:将这些图形拉伸为圆,并转化为线段。

小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

四、拓展提升,实践应用。

1.学校为了美化校园环境,引进了60盆花,如果想在学校门前的空地上摆出一个漂亮的图案,可以怎么摆?请和大家说说你的设计方案。

2.组织学生汇报。

3.小结。

通过今天这节课的学习,你有什么收获?

植树问题教案篇十二

本次教学内容属于第二学段中“实践与综合应用”领域的教学。

“课标”中要求这部分内容教学时,“应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。”同时建议“数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步激发学生的学习兴趣”。

根据课标的要求,又考虑到前两个例题都是围绕植树这一情境展开的,因此我将教学内容由“围棋盘的最外层每边都能放19个棋子,求围棋盘最外层一共可以摆多少个棋子”的问题改为为学校设计花坛,在古柳周围正方形台面上摆花。激发学生学习兴趣的同时培养学生为学校贡献力量的集体主义意识。

学生已经初步接触了植树问题,会解决在一条线段中的植树问题,了解了栽的棵数与间隔数的关系。本课主要研究封闭图形上的植树问题,如何让学生建立起封闭植树和线段植树的联系,在头脑中建立解决此类问题的模型是教学的重点。

学生对动手操作、自主设计等教学活动比较感兴趣,因此我创设了为学校设计花坛的情境,设计了自主探究、小组合作等教学环节,来调动学生学习的积极性。

1.利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

2.通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

3.在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用。

教学重点:让学生掌握解决封闭图形植树问题的思维方法。

教学难点:探索发现封闭图形情况下棵树与间隔数之间的关系。

本次教学内容为请学生扮演设计师角色为学校设计不同形状的花坛,学生对此内容感兴趣,对动手设计等教学环节比较感兴趣,课堂气氛应非常活跃。学生在思维的碰撞中能够自主探究出封闭图形中植树问题的解题方法,并从中发现问题中存在的一般规律。最终达到能运用知识解决实际问题的目的。

一、创设情景,引入问题

1.播放花坛中由鲜花拼摆出的不同形状的图案,学生欣赏图片,从中感受到鲜花排列的整齐特点。

2.进而教师提问:想不想用鲜花设计属于自己的花坛?今天这节课大家就来设计一个自己喜爱的花坛来装饰校园。

4. 组织学生反馈::9÷1+1=10盆

小结:同学们用以前学习的植树问题帮老师解决了这个数学问题。

预设生1:40盆,生2:36盆。

5.提出建议:到底是36盆还是40盆,要知道哪个答案是对的,老师建议大家用画一画的方法来验证一下到底是需要多少盆。

二、多元表征,感知模型

1.出示学习建议:

(1)请利用老师提供的材料,在纸上画一画,圈一圈。并写出算式。(花盆可以用符号表示)

(2)画好后先独立思考,再在小组中说一说你的方法。

2.组织反馈:你是怎么想的?由学生介绍自己的想法和列式。(先把学生的四种方法都用投影展示出来,再讲评每一种方法)

3.回顾方法:刚才我们这四种方法解决了问题。(课件动态演示)

小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

三、探索规律,有效建模

1.延续情境,提出问题:除了给古柳树周围正方形的台面摆鲜花外,学校还想再建一个大花坛,其中需要把红色太阳花摆在三角形台面上(每边6盆),把粉色的月季花摆在六边形的台面上(每边4盆),请你算一算各需要多少盆。)

每边6盆,一共要多少盆?每边4盆,一共要多少盆?

2.组织反馈:你是怎么算的?(结合图说明算式的意思)

学生利用材料自主探索。

5.组织交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?你还有什么新的发现?(投影展示学生的设计方案,引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

小结:花盆数=间隔数

(1)学生利用材料自主探索

(2)组织交流反馈

(3)动态演示:将这些图形拉伸为圆,并转化为线段。

小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

四、拓展提升,实践应用

1.学校为了美化校园环境,引进了60盆花,如果想在学校门前的空地上摆出一个漂亮的图案,可以怎么摆?请和大家说说你的设计方案。

2.组织学生汇报。

3.小结

通过今天这节课的学习,你有什么收获?

植树问题教案篇十三

这节课主要的教学目的是向学生渗透复杂问题从简单入手的思想,让学生有机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此本节课的设计说明如下:

1.让数学走进生活。

弗赖登塔尔说过:“数学是现实的,学生要从现实生活中学习数学。”在教学过程中以谜语导入,以学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,能清晰地看出手指的根数与间隔数之间相差1,让学生认识并总结出间隔数和手指根数的关系,为下面的学习作铺垫,同时也激起了学生的学习兴趣。

2.让学生成为学习的主人。

教师是学习的引导者,学生是学习的主人,教师在学生的学习过程中起到启发、引导的作用。在本节课的教学中,体现了学生的主体地位,发挥学生的主观能动性。因此,本节课的设计采用自主探究式学习模式,借助小组学习的方式让学生经历从探究发现规律到应用规律的实践活动过程,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法的内涵。

教师准备ppt课件

学生准备直尺

谜语导入,揭示课题

1.猜谜语:两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。(手)

2.介绍间隔。

(1)找一找。

(2)数一数。

师:5根手指之间有几个空?

(3)讲一讲。

(4)说一说。

师:你们发现手指数和间隔数的关系了吗?谁能说一说?(手指数比间隔数多1或间隔数比手指数少1)

3.引入新课。

植树问题教案篇十四

1、建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数—1”的数学模型。

2、通过画线段图初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。教学重点:建立并理解“棵数=间隔数—1”的数学模型。教学难点:培养学生探索解决问题的有效方法的能力。

课件。

一、创设情境,导入新课:

师:同学们,你们参加过招聘会吗?

生:没有。

师:想不想拥有这样一次经历?

生:想。

师:瞧,老师带来了一份招聘启示。(课件演示)

招聘启示:

新兴学校将对校园进一步绿化,特聘请校园设计师一名。要求设计植树方案一份,择优录取。

师:愿意试试吗?我们先来看看设计有什么要求。(课件演示)

为了美化环境,要在的一条60米长的小路一边植树,每隔3米栽一棵,需要准备多少棵树苗呢?。

说一说,你们打算怎样植树?

师:哪位同学愿意来说说你的想法?

学生汇报讨论结果

生1:两端都栽。

生2:头栽尾不栽。

生3:尾栽头不栽。

生4:两端都不栽。

师:从这份要求上,你能获得哪些信息?

生:路全长有60米,只在路的一边栽,每隔5米栽一棵。

师:两端都栽要栽多少棵?这节课我们来研究两端不栽的植树问题。

二、民主导学:

任务呈现:

1、你都知道了什么?

2、你认为一共要栽多少棵树?

师:这道题和上节课学的植树问题有什么不一样呢?

自主学习:

小组四人每人选一个长度,间距还是3米,来画一画,填一填。展示交流:

师:大家发现棵数和间隔数有什么关系?间距、间隔数和总长有什么关系?

生:棵数=间隔数—1

间距×间隔数=总长

60÷3=20(个)

20—1=19(棵)

19×2=38(棵)

教师追问:为什么要“×2”?(因为小路两旁都要栽树)

师:大家在做题的时候,一定要判断是“两端要栽”还是“两端不栽”。

三、检测导结:

师:在刚才的学习过程中,同学们既发现了规律,又总结了方法,真了不起。老师这里有几道题,把明明难住了,我们来帮帮他。

1、目标检测:

一、填一填

1、一排同学之间有7个间隔,第一排有()个同学。

2、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。

二、算一算

1、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,一共有几个车站?

2、结果反馈:

3、反思总结:

师:通过今天的学习,大家有哪些收获?

学生畅谈收获。

师:同学们的收获真不少!通过今天的学习,我们不仅发现了植树问题中两端都栽和两端不栽的规律,而且还学会了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的问题还有一端栽一端不栽,下节课继续研究!

植树问题教案篇十五

本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第3课时,探讨封闭图形的植树问题(如果是矩形,每边可看作一端种另一端不种)。

1、建立“棵数=间隔数”的数学模型,解决简单的实际问题。

2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

3、体会数学模型的生活意义与作用,体验到学习的喜悦。

建立“树的棵数=间隔数”的数学模型

为什么“树的棵数=间隔数”?

……

在一条20米路的一侧种树(两端都种),每2米种一棵,共需种几棵?

在一条20数路的一侧种树(两端都不种),每2米种一棵,共需种几棵?

……

在一条20米路的一侧种树(一端种),每2米种一棵,共需种几棵?

1、揭题:植树问题。

2、呈现问题,请学生解决。

3、反馈解法,说说什么情况下选择什么方法。

用围棋摆一个正方形,每边摆7个,一共需要多少围棋?

1、议:7×4=28对不对?

2、根据要求及图形,用自己的方法解决。

3、反馈各种解法,说说自己的方法的怎么避免重复计数的?

4、议:(7-1)×4的理由是什么?

1、完成p121做一做-1,3。

2、完成p121做一做-2,并讨论最多的情况。

3、画图完成第3题。

植树问题教案篇十六

义务教育课程标准实验教科书(人教版)四年级下册数学广角。

1.经历将实际问题抽象成数学模型的过程,掌握种树棵数与间隔数之间的关系。

2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。

3.感悟构建数学模型是解决实际问题的重要方法之一。

让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

情境:同学们参加植树活动,要根据植树要求“动脑筋,领树苗”。

问题:有一条12米长的小路,一小组要在小路的一边植树,要求每隔2米栽一棵(两端都栽),该领多少棵树苗呢? (大屏幕出示)

1.实践操作,得出结论

(1)初步感知,大胆猜想

你们认为一小组的同学该领多少棵树苗呢?

(2)动手操作,验证猜想

用画图法或摆一摆的方法“栽一栽”。

2.尝试不同的栽法,积累研究素材

(1) 激发兴趣谈栽法

(2) 自由选择试栽法

(3) 交流汇报作记录

3.观察分析,发现规律

师:现在请大家认真观察一下老师记录的这些数据,你会不会有所发现呢?先独立思考,再把你们思考的结果互相说一说。

(1)认真观察,独立思考

(2)小组交流,集思广益

(3)班级汇报,总结规律

1.运用规律,解答117页的例1。

2.运用规律,解答118页的“做一做”。

3.运用规律,解答119页的“做一做”的第1题。

小结:安装路灯问题也是一种植树问题。

植树问题教案篇十七

植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。

1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。

2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。

3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。

理解间隔数和棵数之间的关系,建构数学模型。

建立模型及“一一对应思想”的应用。

1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。

2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。

第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,

在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的名称。然后将探究的重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1。

第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。

第三环节中设计了两道习题,第二题是生活中常见的例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。

作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。

1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。

2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。

3、探究得太少,自己说得太多。使课堂不够开放。

4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。

植树问题教案篇十八

3.让学生感受数学在日常生活中的广泛应用。

教学重点:

从封闭曲线(方阵)中探讨植树问题。

教学难点:

用数学的方法解决实际生活中的简单问题。

一、复习旧知,情境导入(课件出示)

(1) 在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?

师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1)

师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数-1)。让学生说出每个算式所表示的意义。

你能说说棵数与间隔数之间的关系

二、探索新知。

板书课题:封闭图形的植树问题

2、运用规律。

圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

(1)引导学生读题,理解题意。独立完成。

(2)理解圆形的株数与间隔数相等,

列出算式:12÷2=6(盆)

3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数

4、发现规律:在圆形的花坛上种树,棵数=间隔数 。

圆形花坛的一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?

5、学习例题:

学生小组合作,寻求解决问题的方法。学生自主探索会出现如下几种方法:

方法1:直接点数出最外层一共可以摆放72个棋子。

方法2:列式:19 ×2+(19-2)× 2=72(个)

方法3:列式:(19-1)×4=72(个)

方法4:列式:4+(19-2)×4=72(个)

方法5:列式:19×4 - 4=72(个)

以上方法,教师引导比较:除方法1外,其余算法都抓住了4个角上的棋子不能重复计算的关键点。

6、探究规律。

(1)首先理解封闭图形

围棋盘的最外层是一个正方形,像这样首尾相连没有开口的图形就是封闭图形。(课件出示)

(2)提问:

(3)引导学生运用数形结合思想寻找规律,学生交流说出:棋子数=间隔数的结论。

学生研究发现 :如果将画好的封闭图形沿着一圆点断开拉直就变成一端栽一端不栽的植树问题模型,利用原理逆向思维再次验证棋子数=间隔数这一规律。

(4)回到原题:围棋盘最外层每边有19个棋子,即每边有(19-1)个间隔,4边共有18×4=72(个)间隔。因为最外层的棋子数=间隔数,所以72个间隔也就说明有72个棋子。

列式:(19-1)×4=72(个)

答:最外层一共可以放72个旗子。

(6)引导学生说出公式: 最外层的总数=(每边的棵树-1)×边数

7、运用规律解决问题。

(1)摆棋子:一个四边形,每个顶点都摆一个。

(2)如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

设问:100-1求的是什么?乘4呢?(为什么要乘4?)

(3)如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

(4)如果在一个正五边形的边上摆,怎么算?一个三角形呢?

8、摆花盆:完成做一做第2题 问题:

沿正方形的池塘边植树,要求每边都植4棵,一共需要多少棵树苗?

三、巩固延伸

解决问题:

1、沿一个正三角形实验田的外边,每边种8棵向日葵最少能种几棵?

课后延伸题

最外层总数=间隔数×边数

五、作业布置

教材122页的第4、6、7、8题

植树问题教案篇十九

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

课件、表格、尺子等。

1.教学间隔的含义。

师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

预设:学生可能大多数对得到20棵。

师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

全班交流汇报。(重点让用线段图来验证的小组来说明理由。)。

师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

根据学生的回答,师填写表格:

总长(米)。

20。

全班观察表格寻找规律。

师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)。

师:对得到的这个规律有没有不同意见?

师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

(1)基础练习。

师:请看题目,谁愿意来说一说?

a2.如果是每隔10米栽一棵呢?(口答)。

c.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

(2)拓展练习。

师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?

课件出示解放碑的大钟及题目。

解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

师:请同学们独立的在练习本上完成。

小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

1.通过这节课的学习你有什么收获?

2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

植树问题教案篇二十

1.通过探究发现一条线段上两端要种、一端要种、两端不种三种不同情况植树问题的规律。

2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

1、课前谈话:

今天来这里上课,有什么不同的感觉?

老师挺高兴的,这么多人,正好做一个公益宣传,请看--

春天,是植树的最佳时间,在座各位朋友,同学,为了我们地球生命,给这些孩子们一个健康的环境,请爱护树木,有钱出钱,有力出力,多多种树!支持的,鼓鼓掌!谢谢!

1、揭示课题(2分钟)

师:你们觉得种树与数学有联系吗?

生:间隔,米数等等问题。

师:种树与数学之间确实有联系,这节课我们就一起在种树问题上研究数学。(课件出示课题:植树问题)

2、出示问题

课件出示问题:同学们在全长1000米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗。

1、理解信息(2分钟)

师:能看懂吗?告诉我们哪些信息?

生:全长100米,每隔5米等等

师:每隔5米是什么意思?

生:就是两棵树之间的“间隔”;

师:“间隔”这个词听过吗?能举几个例子吗?

比如同学之间,手指之间......都可以看作是间隔。

师:两端要种什么意思?

生:头和尾各要种一棵。

2、形成猜想(1分钟)

师:如果,把这条路的一旁看成一条线段的话,猜猜看,需要几棵树?看谁想得快!

生1:200

生2:201

生3:202

师:三个猜想答案,到底哪个答案才是对的?我们有什么办法知道?

生:验证。

3、化繁为简(4分钟)

师:是的,可以画图,模拟种一种,数一数,就能知道正确的答案了。

师:才种了35米,一共要种多少米?

生:1000米。

师:这样一棵一棵,一直种到1000米?!同学们,你有什么想法?

生:太累了,太麻烦了,太浪费时间了。

生:想

师:这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究,在研究的过程中发现规律。(课件出示:研究方法:复杂问题--简单问题--发现规律--解决问题)

3、举例验证(5分钟)

师:你认为取多少长的路,画图种树,比较好验证呢。

生:5米,10米,15米,20米,25米。

师:老师给你们带来了长短不同的“路”,把它想象成“路”,行吗?你可以把它看作是10米,15米等等,现在请你用笔,独立在这些“路边”种树,并列出算式,把你的发现也写在纸上,开始。(学生独立活动,2分钟后,)

师:把自己的发现,轻轻地告诉小组里的同学,并做好向全班同学汇报。

4、反馈交流(如何操作还是一个问题)(5分钟)

请一个小组把自己的研究成果展示在黑板上。

师:请你代表这组同学,把研究的过程,和得到的规律,向全班同学解释一下。

师生互动

师:这空在这里是怎么回事?

生:间隔5米;

师:为什么是空了4个间隔?

生:20米里正好有4个5米;

师:怎么算出来的?

生:20除以5等于4

师:4个间隔数,空了4次

师:这样种(板书:两端种),可以吗?)

5、揭示规律(0.5分)

师:运用化繁为简的解决策略,同学们发现了植树问题中,非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)

6、解决问题(3分钟)

师:现在你能运用这个规律,解决刚才复杂的问题吗?请独立列出算式。然后向同座说一说解决思路。(请一位学生板演,并说解题思路,老师追问:这里的200指什么,为什么要减1。)

师:(指着猜想答案)当时你是怎么猜想到200棵的。

师:虽然你猜测的答案是错的,但你敢猜想,证明你有学数学的胆量,正因为出现了不同的答案,才让我们走上探索之路,所以,我们得谢谢你!

7、巩固练习(6分)

1、过渡设疑

2、形成猜想

3、验证猜想

4、得出结论

5、打通联系

师:其实植树问题并不只是与植树有关,在我们的生活中,还有许多现象与植树问题很相似。

(1)同学们排队跑步,队伍长4米,每两人之间的距离是1米,这队学生有多少人?

1)4÷1+1=5(人)2)4÷1-1=3(人)3)4÷1=4(人)

1)10÷2+1=6(次)2)10÷2-1=4(次)3)10÷2=5(次)

1)12÷1+1=22(个)2)12÷1=20(个)3)12÷1-1=9(个)

师:其实,同学们的收获才刚刚开始。多个点等距离排列成一条直的线,点的数量与间隔数之间有一定规律;如果,多个点等距离排列成一个方阵;如果,多个点等距离排列成一个圈,或等距离排列成其它形状,这里面蕴含着更深奥的数学,期待同学们去发现!

【本文地址:http://www.xuefen.com.cn/zuowen/10869523.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档