等式的基本性质教学设计及反思(汇总20篇)

格式:DOC 上传日期:2023-11-16 14:17:18
等式的基本性质教学设计及反思(汇总20篇)
时间:2023-11-16 14:17:18     小编:GZ才子

"总结是一种自我归纳和总结的方式,可以让我们更好地认识自己。"写总结时,要避免主观臆断,要有客观事实支撑。下面是心理学家总结的情绪管理策略,帮你更好地调节情绪。

等式的基本性质教学设计及反思篇一

教学目标:

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学难点:根据乘法等式写出正确的比例。

教学准备:多媒体课件。

整体设计说明:

本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

教学过程。

一、旧知铺垫导入。

2、比和比例有什么区别?

设计意图:注重从学生已有的知识出发,为新课做好铺垫。

二、自主探究。

过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

三、反馈练习。

指出下面比例的外项和内项。(投影出示)。

先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

五、巩固练习。

1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

(学生独立完成后,用展示台展示)。

3、根据比例的基本性质,在()里填上适当的数。(投影出示)。

六、全课总结:这节课你有什么收获。

设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

七、拓展练习:把下面的等式改写成比例。

3×40=8×15。

等式的基本性质教学设计及反思篇二

教学目标:

1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

教学重点和难点:

教学准备:多媒体课件。

教学过程:

一、复习旧知。

1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。

3∶6=1∶2。

所以6∶10=9∶15生2:因为20∶5=4∶1。

28∶7=4∶1。

所以20∶5=28∶7.

(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

(1)观察这几组比例,它们有什么共同点?

在比例6:3=4:2中,组成比例的四个数“。

6、

3、

4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

(1)与同桌每人写出一个比例,交换验证。

(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”

(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

三、巩固练习。

1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。

追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

学生独立完成,教师巡视。

2、练习七第2题。

(1)下面四个数。

5、

说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

3.任意从1-10中,写出4个数,判断能否组成比例?

与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。

(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。

四、全课总结。

今天我们学习了什么内容?你有什么收获?

等式的基本性质教学设计及反思篇三

《等式的基本性质》教学反思等式的基本性质是解方程的认知基础,也是解方程的重要理论依据,因此学习和理解等式的性质就显得尤为重要。起初,我们在设计这节课时,四条性质的教学力量分布得比较平均,等式两边同加、同减、和同乘的实验由教师演示,等式两边同除的实验再放手让学生独立完成。

在教学之后,我们发现这样的设计,重点不够突出,在经过了网络研讨和集体反思之后,最终形成了将等式两边同加的这条性质作为重点讲解内容,其它的三条性质在第一条性质之后,由学生通过观察、理解、操作等学习方法,共同探索得出结论,教师只是给予适时的点拨,总结。加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。

实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。

这一环节在实验的基础上让学生灵活的运用字母表示数的知识,在理性的思考,形象的'演示的基础上,在推理后验证自己的想法,不仅学生的数学思维得到有效的训练,还使学生对等式的性质有了一定的认识。有了以上的实验基础,为学生更深入的研究等式的性质做了坚实的铺垫。在教学等式两边同减、同乘、同除的性质时,教师便可以逐渐放手,让学生经历观察、实验、猜测、计算、推理、验证的过程中,积极参与验证自己的猜想,在实验的同时获得了成功的喜悦,感受到思考的乐趣,对等式的性质有初步的了解,为后面学习解方程奠定了良好的基础。

将本文的word文档下载到电脑,方便收藏和打印。

等式的基本性质教学设计及反思篇四

以前的教材中,在学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等求方程中的未知数。而现行的教材是借用天平游戏使学生理解等式的基本性质,在用等式的基本性质解方程。为初中学习移项、合并同类项等方法作准备。

教授这节课前,我先让学生自己预习,小组互说操作,完成设计好的导学。最后我再课件操作验证学生的结论,一步步引入等式的基本性质。

本节课,根据学生已有知识水平,从学生的生活实际出发,合理运用教材提供的素材,充分挖掘教材;课堂教学的过程应始终体现学生自主探究的教学理念,注意激活学生已有的数学经验,引导学生自己去思考;课上学生们紧跟我的思路,认真思考,积极的参加小组活动,学生表现很积极。

1、等式的性质体现了数学的对称美,教学中让学生在15分钟时间内充分利用天平的直观性,让学生观察、分析现实生活中的现象,并尝试用数学知识来描述这种现象,突出数学与日常生活的紧密联系,使学生获得关于等式性质的知识,并养成认真观察的学习态度。通过直观演示,帮助学生感悟怎样才能使天平的两端保持平衡,引导学生以等式的基本性质为解方程的基本方法,生动直观地呈现解方程的原理。这样设计既重视过程,又重视结论;既重视知识的教学,又重视能力的培养。在教学中采取先扶后放、动手实验操作的形式,也为学生提供了更多的参与学习的机会。培养了自主学习、动手操作等能力,体现了以学生为主导,教师为主体。

2、猜想入手,激发学习兴趣。猜想是学生感知事物作出初步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时乘或除以同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。

3、学生展示环节非常好,不仅仅展示了实验过程、现象,总结了规律,在展示过程中,能积极补充、质疑,个别同学质疑的问题很有价值。

等式的基本性质教学设计及反思篇五

它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。

本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。

由于等式的基本性质是解方程的基础和依据,所以我在教学时给予特别重视,加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。

第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。

然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。

实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。

通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。

这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。

总之,数学教学要给学生留出大量的习题训练时间,给学生消化和熟悉巩固的机会是很有必要的,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。

等式的基本性质教学设计及反思篇六

《等式的基本性质》是五年级第二学期认识方程的第二、三课时。等式的基本性质是解方程的认知基础,也是解方程的重要理论依据,因此学习和理解等式的性质就显得尤为重要。这学期我们学习等式的两个性质,因此把等式两边同加的这条性质作为重点讲解内容,另一条性质在第一条性质之后,由学生通过观察、理解、操作等学习方法,共同探索得出结论,教师只是给予适时的点拨,总结。加法是学生学习计算的基础,因此在教学等式的性质一时,通过课件演示,第一层次,在天平两边同时放上同样的物品,并用等式表示(50=50)。第二层次,问:怎样在天平的两边增加砝码,使天平仍然保持平衡?得出两个等式50+10=50+10;50+20=50+20;……50+a=50+a问:你发现了什么?学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。也就是等式两边同时加上同一个数,所得的结果仍然是等式。这样的设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的`同时,也注意到将等式与课件演示进行结合学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。有了这样的学习基础,为学生更深入的研究等式的性质做了坚实的铺垫。在教学等式两边同减、同乘、同除的性质时,教师便逐渐放手,让学生经历观察、实验、猜测、计算、推理、验证的过程中,积极参与验证自己的猜想,在实验的同时获得了成功的喜悦,感受到思考的乐趣,对等式的性质有初步的了解,为后面学习解方程奠定了良好的基础。

等式的基本性质教学设计及反思篇七

教师的情绪也比较平淡,没有给学生创设轻松愉快自然的氛围,使得前半部分的课堂有点沉闷,敢于大胆发言的学生也比较少。由此可知:教师进入课堂就要立刻调动自己的情绪,使学生有轻松活泼的感觉,学生才会调动自己的情绪,将注意力集中到教师所传授的知识上,大胆地发表自己的想法。课堂也才会有活力。

从学生的反应来看,这种提出问题让学生先猜测的教学方法,因为平时训练的少,教师突然放手,学生不知所措,不知道如何去思考。学生还习惯于在老师的引导下去掌握新知,巩固新知,然后学会解题。即学生的创新能力的培养还不够,需要加强。

同时也提醒教师在设计问题时要从本班学生的`实际情况出发,要有层次,有坡度,使学生的思考有方向,有目标,一步一个台阶,最终达到预期的效果。课堂上教师在发现学生出现愣神时,及时将问题简单清晰化是明智的。这个现象在含加法的方程中也出现过,如:75+x=150,有学生写:75+x-x=150—75,x=75。分析原因在于:教学中的例题,多数是x在运算符号的前面,然后根据等式的性质使左边只剩下x时,都是左边加几,等式两边就同时减几,学生形成思维定势,只看左边运算符号后面的数,说明学生对等式的性质的理解不透彻,解方程时是“照葫芦画瓢”,并没有真正掌握解方程的方法,学生灵活运用的能力薄弱。

等式的基本性质教学设计及反思篇八

1.理解比例的基本性质,认识比例的各部分名称。2.能用比例的基本性质正确判断两个比能否组成比例。学习重点理解比例的基本性质。

学习难点会根据比例的基本性质判断两个比能否组成比例。教具学具:ppt课件教学环节。

一、复习(课件出示以下问题,指名学生回答)。

1、什么叫做比例?

2、什么样的两个比才能组成比例?

3、判断下面的比,哪两个比能组成比例?把组成的比例写出来。3:918:303:61.8:0.92:49:27学生独立完成后全班交流订正。

判断两个比能不能组成比例,除了看比值是否相等,还有没有其它的方法?这节课我们就一起来研究研究。

二、自主探索,体验新知。(课件出示自学要求)。

1、自学要求:1)自学书第41页的内容,把重要的地方画上线,不懂的问题用铅笔标在书上。2)提示:可以结合以下问题进行自学:

(1)什么叫比例的项?比例中有几个项?分别叫什么?(2)你能把比例改写成分数形式吗?改写成分数后你还能找到比例的外项和内项吗?试试看.(3)比例的基本性质是什么?你能用字母表示这个性质吗?根据比例的基本性质如何判断两个比能不能组成一个比例.(4)小组中议一议并集体交流。

2、组织学生交流自学成果。1)试一试。

应用比例的基本性质,判断下面的两个比能否组成比例。如果能组成比例,把组成的比例写出来,并指出比例的内项和外项。

3:6和8:50.2:2.5和4:502)课件出示三组比例,让学生填空。

三、巩固练习。

课件出示练习题,学生练习。

四、课堂总结说一说本节课的收获。

等式的基本性质教学设计及反思篇九

教学目的:使学生理解比的基本性质,掌握化简比的方法。

教学重、难点:化简比的方法。

教学过程:

一、复习。

1.除法中的商不变规律是什么?分数的基本性质是什么?

2、比与除法、分数有什么关系?

3、求比值 5:15  4/5:8/15  0.8:0.12。

二、新授。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道。

和除法、分数有着密切的联系,比的前项相当于被除数,比的。

项相当于除数;比的前项也相当于分数的分子,比的后项相当。

分母。

那么在比中有什么样的规律?让学生自己讨论初步说出结论。

比的前项和后项同时乘以或者同时除以相同的数(零除外)。

注意:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

出示例1:把下面各比化成最简单的整数比。

(1)14:21      (2)1/6:2/9  (3)1.25:2   。

(1)问:这道题的前项和后项都是什么数?怎样才能使它化成最简的整数比呢?(先让学生自己讨论解答,然后引导得出:要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。

(2)问:这是一道分数比,怎样才能使它转化成整数比?(让学生自己动手做,后对照课本上的例题做法,对或者错,共同完成后引导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比)化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)问:这道是小数比,怎样化成整数比?(让学生说说并自己解答。指导根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比)。

(4)还有其它解法吗?可根据学生所答具体分析,特别是分数比实际上可用是分数除法来计算化简。

小结:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?特别提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简比的方法。

2.练习十二第5、7、8题。

3.练习十二第9题。

四、作业。练习十二第6、10题。

等式的基本性质教学设计及反思篇十

1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

2、利用比例知识解决实际问题。

3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

一、谈话导入,创设情境:

出示cai课件(一张微型照片)。你能看出这是杭州哪一个景点的照片?的确,照片太小了,那现在老师将这张照片按一定比例放大一些,。由此出现一张平湖秋月的风景照。

我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

二、自主探究,学习新知。

(一)教学比例的意义。

1、8厘米。

出示。

6厘米。

4厘米。

3厘米。

(1)根据表中给出的数量写出有意义的比。

(2)哪些比是相关联的?

(3)根据以往经验,可将相等的两个比怎样?(用等号连接)。

教师并指出这些式子就是比例。

2、让学生任意写出比例,并让学生用自己的语言描述比例的意义。

3、教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

4、写出比值是1/3的两个比,并组成比例。

1、比例和比有什么区别?

2、认识比例的各部分。

(1)让学生自己取。

(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的。

外项,中间的两项叫做比例的内项。

板书:8:6=4:3。

内项。

外项。

(3)让学生找出自己举的比例的内外项。

()。

12。

2

()。

=

(4)找出分数形式比例的内外项位置又是怎样的?

3、出示【启迪学生思维,展开审美想象】。

(1)这个比例已知的是哪两项,要求的又是哪两项?学生试填。

(2)学生反馈,教师板书。

(3)你发现了什么?

(4)指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

4、用比例性质验证你所写比例是否正确。

5、练习8:12=x:45。

0.5。

x

20。

32。

=

求比例中的未知项,叫做解比例。

如何证明你的解是正确的?

(三)小结:今天这堂课你有什么收获?

三、巩固练习。

1、下面哪几组中的两个比可以组成比例。

4

1

12:24和18:36。

0.4:和0.4:0.15。

14:8和7:4。

5

2

2、根据18x2=9x4写出比例。【体会到数学的逻辑美,规律美】。

3、从1、8、0.6、3、7五个数中。

(1)选出四个数,组成比例。

(2)任意选出3个数,再配上另一个数,组成比例。

(3)用所学知识进行检验。

四、实际应用。

不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

同学们,如果你是汪骏强,你准备怎么办?

等式的基本性质教学设计及反思篇十一

1。让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2。根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3。培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,小红分得多。”

生乙:“我觉得小明分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

请你们把这三张圆片叠起来,比一比大小,看看怎么样?

生:“三张圆片一样大。”

1、师:“下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

首先,请在第一张圆片上表示出它的1/3;

再在第二张圆片上表示出它的2/6;

然后在第三张圆片上表示出它的3/9。

好了,大家动手分一分。(教师巡视指导)。

2。师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)。

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

师:“那九分之三又是怎么得到的呢?大家一起说。”

生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。”

(学生说的同时,教师操作,分完后把圆片贴在黑板上。)。

3。师:“同学们,观察这些圆的阴影部分,你有什么发现?”

:原来三个圆的阴影部分是同样大的。

师:“现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)。

生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)。

“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。

师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)。

1、学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2、学生练习课本例题2,两名学生在黑板上做。

3、学生自己小结方法。

4、按规律写出一组相等的分数。

等式的基本性质教学设计及反思篇十二

知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。

:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。

:理解和掌握分数的基本性质,会运用分数的基本性质。

ppt课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。

一、故事导入激趣引思。

引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。

生发表见解。

二、自主合作探索规律。

1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!

2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:

(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

(2)思考:在写分数的过程中你们发现了什么规律?

组内商量一下然后开始行动!

3、小组研究教师巡视。

4、全班汇报。

5、反思规律看书对照找出关键词要求重读共同读。

6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。

三、自学例题运用规律。

生自学。

集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

四、多层练习巩固深化。

1、判断对错并说明理由。

思考:分数的分母相同,能有什么作用?

3、圈分数游戏圈出与1/2相等的分数。

4、对对碰与1/2,2/3,3/4生生组组师生互动。

五、课堂小结课堂作业。

结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,

作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

等式的基本性质教学设计及反思篇十三

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

根据乘法等式写出正确的比例。

多媒体课件。

本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

一、旧知铺垫导入。

2、比和比例有什么区别?

【设计意图】。

注重从学生已有的知识出发,为新课做好铺垫。

二、自主探究。

过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

【设计意图】。

组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

三、反馈练习。

指出下面比例的外项和内项。(投影出示)。

先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

【设计意图】。

这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

【设计意图】。

这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

五、巩固练习。

1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

(学生独立完成后,用展示台展示)。

3、根据比例的基本性质,在()里填上适当的数。(投影出示)。

六、全课总结:

这节课你有什么收获。

【设计意图】。

关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

七、拓展练习:把下面的等式改写成比例。

3×40=8×15。

等式的基本性质教学设计及反思篇十四

教学目标:

1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

2、培养学生类比、推理和概括思维能力。

教学重点:

一、探究新知。

1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?————小研究(后附)。

(1)4人小组交流(2)全班交流。

(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

(二)化简比———完成练习题(后附)。

1、小组交流。

2、全班交流。

小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

二、巩固练习。

1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是。

2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

3、拓展练习。

3:8=(3+6):(8+)。

(让学生分小组讨论方法)。

三、课堂总结。

这节课有哪些收获?师生共同总结。

等式的基本性质教学设计及反思篇十五

【导语】本站的会员“穿马甲逛街”为你整理了“《分数基本性质》。

教学。

设计”范文,希望对你有参考作用。

根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。

《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

多媒体课件长方形白纸、圆片,彩色笔等。

一、创设情境,激趣导入。

生1:四、五、六年级分的地一样多。

生2:……。

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知。

1,小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2,汇报结果。

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

生5:……。

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察。

总结。

得到校长分的地一样多。)。

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的.学习活动之中。)。

师:三个年级分的地一样多,那么你们觉得、这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书=)。

生:分数的分子分母发生了变化分数的大小不变。

生:分子分母同时乘2,……。

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)。

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时相同0除外。

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三:应用新知,练习巩固。

(一)练一练。

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二)判断(抢答)。

1、分数的分子、分母都乘过或除以相同的数分数的大小不变。

2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。

3、给分数的分子加上4,要是分数的大小,分母也要加上4。

(四)测一测。

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四:总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)。

五:作业练习册2、4题。

给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!

这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。

本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。

在学生通过听故事、看图片,让学生猜想、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

等式的基本性质教学设计及反思篇十六

1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

使学生理解分数的基本性质。

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,小红分得多。”

生乙:“我觉得小明分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

请你们把这三张圆片叠起来,比一比大小,看看怎么样?

生:“三张圆片一样大。”

1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

首先,请在第一张圆片上表示出它的1/3;

再在第二张圆片上表示出它的2/6;

然后在第三张圆片上表示出它的3/9。

好了,大家动手分一分。(教师巡视指导)

2. 师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

师:“那九分之三又是怎么得到的呢?大家一起说。”

生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”

(学生说的同时,教师操作,分完后把圆片贴在黑板上。)

3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”

小结:原来三个圆的阴影部分是同样大的。

师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的'月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

4. 研究分数的基本规律。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

学生发言

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)

分数的基本性质。

5. 深入理解分数的基本性质。

师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

齐读分数的基本性质,并用波浪线表出关键的词。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

三、

1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2.学生练习课本例题2,两名学生在黑板上做。

3.学生自己小结方法。

4.按规律写出一组相等的分数。

这节课大家有什么收获?

等式的基本性质教学设计及反思篇十七

教学目标:

1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

学习目标:

1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

重点难点:

2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

过程设计:

一、激情导入。

1、导入课题。

生读故事。

2、明确目标。

理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。

3、预期效果。

达到教学目标。

二、民主导学。

任务一。

任务呈现。

动手操作验证性质。

自主学习。

师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求。

1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

2、仔细观察三张纸的涂色部份,你们能发现什么?

师:同位分工合作完成。现在开始。

师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

请二至三位同学说一说。

生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)。

下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

请二名同学重复。

生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

请一至二名同学回答。

师板书:分数的分子分母同时乘相同的数,分数的大小不变。

师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

请一同学回答,

生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。

生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)。

师板书:或者除以。

师:你能根据刚才总结的规律举一个例子吗?

让三名学生举出例子,师板书。并问:分子分母同时除以了几?

展示交流。

师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)。

生:不成立,

师:为什么。

生:因为0不能作除数,

师:0不能作除数,所以这个式子是错误的。(画叉)。

师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)。

生:不成立,因为在分数当中分母相当于除数,除数不能为0。

生:0除外。

师板书0除外。

生:同时和相同的数。

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)。

师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

生齐读二遍。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

任务二。

任务呈现。

课本76页的例2,请一同学读题。

自主学习。

生独立完成,完成后和同位的同学说一说你是怎样想的。

展示交流。

每题请二名同学回答,(集体订正答案)。

检测导结。

1、目标练习。

76页“做一做”

练习十四的1、2、6、7题。

2、结果反馈。

生做完后同桌交流,再指名说说结果。

3、反思总结。

今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

三、辅助设计。

教具课件设计。

小黑板正方形纸数块。

板书设计。

练习和作业设计。

1、完成课本76页做一做中的1、2题。

生独立完成,师指名回答。

2、完成练习十四中的1、2、5、6、7题。

师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

等式的基本性质教学设计及反思篇十八

1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。

3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。

:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:

师生问好!

师:课前我们先进行一组口算练习,下面请##同学上台主持。

3:8=2:6=4:4=9:3=8:24=。

5:20=8.8:1.1=16:96=。

4:5=2:20=。

32:4=4:44=。

15:25=10:80=。

(小组活动)。

(学生回答)。

(学生回答)。

师:同学们真了不起,提出了这么多问题!

学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。

(小组活动)。

师:哪个小组的同学愿意来汇报自主学习的内容?

生汇报:我来汇报……其他小组有什么评价或补充吗?

师评价。

(生答)。

师:我真为你们感到骄傲,想到了这么多不同的答案!

组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

说出老师指的这个数是比例的外项还是比例的内项?

(师指生齐说)。

师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成。

师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?

师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。

(指1生读温馨提示)。

(生合作探究)。

师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。

(生汇报展示)。

师:同学们能通过举例,验证自己的发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的比例,可发现交叉相乘的积相等。

师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?

(生谈收获)。

师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》。

师:下面我们进行达标检测。

(生完成后)。

师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。

(小组汇报)。

师:全对的同学请举手,组员全对的奖励一颗小印章。

师:同学们这节课表现得真棒,继续努力,好,下课!

《比例的意义和基本性质》是青岛版六年级下册第35—36页的内容,本节的教学目标制定如下:1、在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例(重点)。2、通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力(难点)。3、通过自主学习,经历探究的过程,体验成功的快乐。本节概念性的东西较多,学生需要理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,我大胆放手,通过让学生自学课本,让学生讲的方式,使学生的学习能力得到了提升。备课前我查阅了有关比例的意义和基本性质的很多资料,并观看了视频,在研读了课标及教学用书后设计了自己的教学思路。《比例的意义和基本性质》是属于概念的教学,在课的设计上我紧扣“概念教学”这一主题进行设计。下面我从以下几方面反思自己的教学:

比例的意义和基本性质,是在学生学习了“比”后进行的,而“比’是上个学期学习的知识。根据我对学生的了解,大多数学生会把学过的不相关的知识忘到脑后,因此,通过课前口算练习和知识链接环节,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。

课改鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕迹而已。

从境景图入手,主要是让学生能通过现实情景体会比例的应用,运输量和运输次数的比的比值是相等的,由此引入比例的意义的教学。

在教学这节课时,我能充分发挥学生的主体作用,让学生通过小组讨论、交流,自主得出在比例里,两个外项的积等于两个内项的积,然后举例验证,最后归纳出比例的基本性质。学生用实际行动证明了他们对这部分知识的掌握,积极性也很高。

每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,把12:()=():5这个比例补充完整,告知学生有无数个比例,这样能推动学生积极思考,培养学生的发散思维。

根据一个乘法等式,写出比例,鼓励学生逆向思维,意在考察学生能否灵活运用新知。学生的表现也挺让我惊喜的,学生的思维很灵动。

每一次的课,总会有一些优点,但也发现了自己的一些不足:

只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。以上是自己对本节课的一些反思,希望领导和老师们批评指正。

等式的基本性质教学设计及反思篇十九

比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。

教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。

学情分析。

学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。

教学目标。

1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。(主要以商不变性质为主要切入口)。

2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

教学重点和难点。

教学难点:掌握化简比的方法。找准整数比前后项的最大公约数、分数比转化成整数比。

等式的基本性质教学设计及反思篇二十

1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

多媒体课件。

一、复习旧知。

1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。

3∶6=1∶2。

所以6∶10=9∶15生2:因为20∶5=4∶1。

28∶7=4∶1。

所以20∶5=28∶7.

(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

(1)观察这几组比例,它们有什么共同点?

在比例6:3=4:2中,组成比例的四个数“。

6、

3、

4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

(1)与同桌每人写出一个比例,交换验证。

(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”

(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

三、巩固练习。

1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。

追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

学生独立完成,教师巡视。

2、练习七第2题。

(1)下面四个数。

5、

说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

3.任意从1-10中,写出4个数,判断能否组成比例?

与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。

(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。

四、全课总结。

今天我们学习了什么内容?你有什么收获?

【本文地址:http://www.xuefen.com.cn/zuowen/12483605.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档