一次函数教案(模板18篇)

格式:DOC 上传日期:2023-11-18 11:15:11
一次函数教案(模板18篇)
时间:2023-11-18 11:15:11     小编:灵魂曲

教案应该具备一定的灵活性和可操作性,能够适应不同的教学实际需求。在编写教案时,要注重教学方法和手段的多样性和灵活性。以下是一些经过验证有效的教案案例,供大家参考和借鉴。

一次函数教案篇一

1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。

2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。

3.逐步掌握说理的基本方法。

过程与方法目标。

1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。

2.鼓励学生用多种方法进行说理。

情感与态度目标。

1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。

2.培养学生合作学习,增强学生的自我评价意识。

教材分析。

教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。

教学重点:平行四边形的判别方法。

教学难点:利用平行四边形的判别方法进行正确的说理。

学情分析。

初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。

教学流程。

一、创设情境,引入新课。

师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。

学生活动:学生按小组进行探索。

一次函数教案篇二

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

1.教学目标

知识与技能目标

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一次方程组和对应的两条直线之间的关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法目标

(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

(3) 情感与态度目标

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

2.教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

3.教学难点

数形结合和数学转化的思想意识.

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

第一环节: 设置问题情境,启发引导

内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节 自主探索方程组的解与图像之间的关系

内容:1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的`图像.

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

第三环节 典型例题

探究方程与函数的相互转化

内容:例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

第四环节 反馈练习

内容:1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点a(2,0),且与 轴分别交于b,c两点,则 的面积为( ).

(a)4 (b)5 (c)6 (d)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况.

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

第六环节 作业布置

习题7.7

附: 板书设计

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

一次函数教案篇三

活动1:观察:

展示学生作图作品(书p28例2),强调列表及图象上的点的对应关系。

课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。

目的有四:

2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。

3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

4、令教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动1、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动2:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)。

目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结。

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受.

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)作业布置。

加强“教、学”反思,进一步提高“教与学”效果。

四、说板书设计。

采用了如下板书,要点突出,简明清晰。

正比例函数图像的画法:确定两点为(0,0)和(1,k)一次函数选择的两点为:(0,k)和(-b\k,0)。

五、说课后小结。

一次函数教案篇四

本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)说教学目标。

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;。

2、会利用两个合适的点画出一次函数的图象;。

数学思考:

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)说教学重点难点。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

一次函数教案篇五

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程。

(一)引入新课。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课。

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式。

解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。

解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题。

(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

5、旅游问题。

古城荆州历史悠久,文化灿烂。

一次函数教案篇六

教学目标:

1、能够用热情、欢快的声音演唱《木瓜恰恰恰》,感受歌曲的欢快情绪和喜悦心情。

2、能够用打击乐器为歌曲伴奏。

3、用叫卖的演唱形式表达歌曲,了解一些相关文化以及“叫卖”的艺术形式。

教学重点及难点:

1、用热情、欢快的声音演唱《木瓜恰恰恰》。

2、正确地演唱《木瓜恰恰恰》的弱起小节及切分节奏。教学准备:多媒体(ppt)、flash动画、歌曲(mp3)、打击乐器(沙锤、双响筒、碰铃等)。

教学过程:

一、播放《卖汤圆》和《冰糖葫芦》,学生走进教室。让学生感受叫卖调(欢快、活泼、幽默、诙谐)。

导课:师:同学们,刚才听的歌曲你们熟悉吗?你们知道是卖什么的?像这种类型的歌曲叫什么歌?介绍叫卖歌。今天,咱们学习一首印尼叫卖歌曲《木瓜恰恰恰》板书课题。

二、走入印尼国家。

1、师:印尼是哪个国家?知道吗?(印度尼西亚)。你们想去看看吗?师:印度尼西亚,是“水中岛国”,是由许多大小岛屿组成的群岛国家,又称“千岛之国”。这里火山活跃,又被称为“火山之国”。该国家盛产水果。它的首都是雅加达,有“歌舞之邦”的美称,生活在各岛上的100多个民族都有自己独特的民歌、舞蹈和乐器,各族人民都非常热爱音乐,尤其在印度尼西亚的著名旅游胜地——巴厘岛,舞蹈已成为人民生活的一部分。

师:你们感受到印尼美吗?(学生答)。

2、出示印尼水果市场。

师:我们又来到了哪里?(水果市场)印度尼西亚的水果特别多,集市上到处都有各种各样的水果,可真是琳琅满目。到处都有吆喝声叫卖水果声。咱们有没有兴趣来学学各种叫卖声,看谁的叫卖声最能吸引顾客来光顾。

二、感受歌曲,解决重难点。

1、播放《木瓜恰恰恰》flash动画。

师:歌曲给你带来什么感受?(欢快、活泼、高兴等)。

2、范唱歌曲。

师:你听出来歌曲中唱到哪些水果?(番石榴、菠萝等)。

3、介绍弱起小节和切分音。

4、跟老师一起读有节奏的.叫卖声,双手拍腿。

师:这个恰恰恰是轻快的还是笨重的?出现在每个乐句的前面还是末尾?(师生一起说“恰恰恰”。)。

4、师生一起随着歌声唱唱轻快的“恰恰恰”。(“恰恰恰”声音要求轻巧、有弹性)。

5.如果让你给这段歌声加上伴奏的话,你觉得在哪儿加比较合适?(生略)让我们拿起自己制作的沙锤或其他打击乐器为音乐加上伴奏。

6、师:除了用乐器还可以用什么来表现恰恰恰韵律(扭胯)。

7、我们一起边说边做,看谁的动作既能合上音乐的感觉又和别人都不一样(师生共同扭胯)。(发现较好学生,请她上台带领同学们再来一次。)。

8、师:刚才我们又唱又跳,真开心!师:下面我们来学唱这首歌。

四、学唱歌曲。

1、让学生用“啦”哼唱歌曲。

2、跟琴学唱歌谱。

3、完整演唱歌谱。

4、按节奏读歌词。

5、教唱歌词。

6、完整演唱歌曲。

五、用多种形式表演歌曲。

分组唱:一组唱,另一组打节奏。

师生合作:跟伴奏,边唱边表演打节奏。

教师小结。

师:今天,我们通过对叫卖歌曲的学习,了解了叫卖歌曲的特点,这些极富情趣的演唱给了我们极大的艺术享受。其实啊,这些音乐都来源于我们的生活,只要你多做有心人,你也一定可以创作出动听有趣的音乐。好,今天的音乐课我们就上到这里,下课。

一次函数教案篇七

在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

2.注重“数学结合”的教学。

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的。对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

(1)让学生经历绘制函数图象的具体过程。

(2)切莫急于呈现画函数图象的简单画法。

(3)注意让学生体会研究具体函数图象规律的方法。

目标。

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会选择两个合适的点画出一次函数的图象;

过程与方法目标。

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

由一次函数的图像归纳得出一次函数的性质及对性质的理解。

一次函数教案篇八

一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

一次函数教案篇九

一、学生情况分析及改进提高措施:

学生们经过两年的学习,已经具备了初步的逻辑思维能力和简单的抽象概括能力,养成了一些良好的学习习惯,掌握了一些科学的学习方法,学会了独立思考和与人沟通、协商、合作、交流的能力,学会了探究问题,并能根据具体情况提出合理的问题,还能正确解决问题的能力。无论是理解问题的.能力,还是分析、解决问题的能力均有所提高,基础知识和基本技能打得也比较扎实,对数学学习有着浓厚的兴趣,乐于参与到学习活动中去,特别是对一些动手操作,合作学习,实践活动等学习内容尤为感兴趣,因此,在教学中应多设计一些活动,引导学生进行独立思考与合作交流,帮助学生积累参加数学学习活动的经验。

在数学知识上已经掌握了两步计算式题和有余数的除法,还有统计知识,并学会了辨认八个方位;掌握了万以内数的读法、写法和加、减法;还掌握了长度单位毫米、厘米、分米、米和千米的实际长度和简单的换算以及实际测量,并能用以上这些相应的知识解决实际生活中的问题。总之,这些技能和知识点都为本学期进一步学习新知识打下了坚实的基础,他们爱学数学的热情,以及对数学的感悟能力会在本学期进一步得到发扬光大,他们的情感、态度、价值观会沿着良性轨道螺旋式上升。

具体提高措施是:

1.从学生的年龄特点出发,多采用情境活动式教学,培养学生的参与意识。两班学生都能根据教师给出的情境获取相关的数学信息,并能根据有效信息提出数学问题,能积极投入到探索问题的活动中去,绝大部分学生能够在课堂上主动的研究问题,获取知识。

2.在课堂教学中,多增添一些与学生生活相关的利于孩子理解的问题,让学生在解决问题的过程中能够联系到实际,便于对问题的理解。结合学生的生活实际,将问题生活化,让学生从生活中获取到更多的解决问题的素材。

3.课后练习注重增添以学习内容为主的相关实践练习,加强各学科之间的联系,少一些呆板的练习,提高练习的实践性和趣味性。在上学期的教学中,我发现学生们比较喜欢做不同科目之间有联系的综合性作业,例如我把数学与科学课相结合,让他们种豆子,了解植物的生长,并做记录,再将每天的记录制作成统计图,学生完成作业的积极性特别高。我为了让学生了解长度单位,让他们从成语词典上收集有关长度单位的成语,通过对词语的理解把握其表示的长度。

4.加强学校教育和家庭教育的联系。关注学生的平时学习情况,与学生家长多沟通交流。

二、本册教材分析。

本册教材充分体现了新《课程标准》的理念,以学生的数学活动实践为学习内容,教材创设了生动有趣的情境,引导学生在解决现实问题的过程中获得对数学知识的理解和体验。教学内容主要包括(1)乘法;(2)除法;(3)观察物体;(4)千克、克、吨;(5)、周长;(6)年、月、日;(7)可能性;(8)共有五个社会实践活动,还有两个整理复习,一个总复习。具体特点是:

1.在数与代数的学习中,重视动手操作与抽象概括相结合,体验乘、除法意义,发展了学生的数感和符号感。

2.在空间和图形学习中,从学生的生活经验出发,注重通过操作活动发展空间观念。

3.教材为教师留下了创造空间,可结合自身教学要求,生发新的教学设想,内化自己的教学设计。

三、总体教学目标:

(一)、知识与技能。

1.在单元学习中,学生通过“数一数”、“分一分”等活动,经历从具体情境中抽象出乘法除法算式,体会乘法与除法的意义。

2.学平面图形的周长,会进行周长的计算。

(二)、实践能力培养。

1.观察物体,引导学生经历观察的过程,体验从不同的位置观察,所看到的物体可能是不一样的。

2.结合生活情境,感受并认识质量单位。

3.经历对生活中某些现象进行推理、判断的过程,能对生活中的某些现象按一定的方法进行逻辑推理、判断其结果。

(三)、情感与态度。

1、让学生在观察和操作的学习活动中,能够感受到思考的条理性和合理性。

2、教师重视对学生数学学习过程的评价,让他们在感受到乐趣之外,应具备必要的学习自信心,养成良好的学习习惯。

教研专题:

创设课堂学习情境,有效培养创新意识。

个人专题:

在情境中培养学生的自主学习意识,提高课堂的有效性。

一次函数教案篇十

各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:

(一)本节内容在教材中的地位和作用。

本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)说教学目标。

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

数学思考:

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)说教学重点难点。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

1、教学方法。

依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导。

做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。

1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

(一)、创设情境,导入新课。

活动1:观察:

展示学生作图作品(书p28例2),强调列表及图象上的点的对应关系。

课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。

目的有四:

2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。

3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

4、令教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动1、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(—b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动2:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)。

目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结。

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)作业布置。

加强“教、学”反思,进一步提高“教与学”效果。

采用了如下板书,要点突出,简明清晰。

正比例函数图像的画法:确定两点为(0,0)和(1,k)一次函数选择的两点为:(0,k)和(—bk,0)。

一次函数教案篇十一

各位专家,各位老师,大家好!

今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:

新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:

(一)知识与技能目标。

1,经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。

2,经历函数图象信息的识别与应用过程,发展学生的形象思维能力。

3,更进一步培养学生的识图能力,即从“形”的方面解决问题。

(二)情感与态度目标。

1,进一步形成利用函数的观点认识现实世界的意识和能力。

2,通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。

3,丰富学生数学学习的成功体验。

本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,

难点是富有挑战性的数学史料。

本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的“新意”。

教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。

评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。

为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。

(一)教学准备:1,提前一天了解“麦莎”的有关内容。

(二)教学过程。

全课分为五个教学环节。

1,情景引入学习新知。2分钟。

2,议一议探索新知。8分钟。

3,练一练巩固新知。10分钟。

4,试一试开阔思路。5分钟。

5,读一读培养兴趣。7分钟。

6,练一练巩固新知。8分钟。

7,想一想感悟收获。4分钟。

8,布置作业。1分钟。

具体过程如下:(多媒体课件)。

一次函数教案篇十二

今天我说课的内容是:一元一次不等式与一次函数。它是北师大版八年级下册第一章“一元一次不等式与一元一次不等式组”中的第五节内容。下面,我从教材理解、学情分析、设计思路、教学流程四个方面谈谈自己对这节课的思考和设计。

一元一次不等式与一次函数是在前面学生学习了一元一次方程、一元一次不等式、一次函数的基础上安排的。本节内容的重点是利用一次函数的图象解一元一次不等式,它既是对一元一次方程、一元一次不等式、一次函数的进一步巩固与深化,又是后续学二次函数等知识的基础和铺垫,起着承前启后的重要作用。同时本节教材承担着“引导学生初步体会不等式、方程、函数之间联系和区别”的章节目标,它是本章中的一个难点,渗透着数形结合的数学思想,反映了“事物是普遍联系”的哲学规律。本节内容的学习,对于启发学生数学思维,开拓学生的数学视野,提高学生的数学能力有着十分重要的意义。

依据课标要求和教材内容,我确定本节的教学目标是。

1、通过观察图象,使学生初步掌握利用一次函数图象来解一元一次不等式的方法。

2、通过学生合作探究,初步体会一元一次不等式、一元一次方程、一次函数之间的内在联系。

3、培养学生数形结合的意识和解决实际问题的能力,使学生充分感受数学的价值,进一步激发学习数学的热情。

我校是一所山区乡镇初中,办公条件相对较差,为了适应课堂教学改革的需求,近期学校在每个教室三面墙体装上黑板,并用竖线分成30小块,每块黑板都是学生课堂交流展示的平台,为学生创造了极大的展示空间。

教室内学生的座位分布以小组为单位,6人课桌相并,相对而坐,好、中、差不同层次学生相互搭配,组成6人学习小组,便于课堂上合作交流,互帮互学,互相促进。经过近段来的实践引导,学生的积极性大为提高,主动性明显增强,良好的学习习惯正在逐步养成。小组内部及小组之间讨论热烈,学生思维活跃,敢想敢说,课堂氛围浓,教学效果好。

在学习本节内容之前,学生已经能够熟练运用代数方法解出一元一次方程和一元一次不等式;能准确根据函数关系式画出图象,并能从图象中分析出变量之间的关系;能找出简单实际情境中的变量及相互关系。这些已有的知识和经验对于完成本课时目标十分重要,但由于本节内容综合性强,并且比较抽象,再加上学生基础、能力有限,所以学生对本节内容的掌握估计有一定的困难。

根据教材特点和学生实际,以及数学课程标准中提出的三个方面的教学实施建议:1、让学生经历数学知识的形成与应用过程;2、鼓励学生自主探索与合作交流;3、注重数学知识之间的联系,提高解决问题的能力等要求,同时结合初中生好奇心、求知欲强等特点,为了充分体现学生的主体作用,培养学生自主学习的精神,首先在新课导入时用简明的引言,点明课题,激发学生学习本节知识的兴趣,调动学生参与学习的积极性;其次在课堂学习中,运用新课程提倡的“自主探究、合作交流”的学习方式,引导学生主动地从事观察、猜测、推理、交流等教学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。为此,本节课的教学,我将采用“提纲导学——交流展示——训练提升——学习评价”四环节主体参与式教学方法。

本节课的教学流程分为提纲导学、交流展示、训练提升、学习评价四个部分。

一、提纲导学。

教师用简练的引言,设置疑问,创设情境,导入新课。然后向学生发放提纲导学活页,其内容包括两个部分:一是学习目标,二是导学习题。出示教学目标的目的是为了让每个学生都明确本节课的学习任务,增强学习的目的性和方向性;导学习题是对教材内容的深度设计和处理,它紧扣课时目标,体现了知识由浅入深的层次性,符合学生的认知规律。同时问题以填空的形式呈现,更加具体,便于学生操作。

学生明确目标后,结合课本20页上方的函数图象,自学完成导学习题。时间预设为8分钟。自学中遇到的疑难问题在小组中合作探究解决,教师深入小组指导自学。

二、交流展示。

这个环节是在自学的基础上,让学生充分交流展示个人或小组的自学成果。时间预设为15分钟。具体过程为:每个小组至少两人在黑板上展示导学习题的自学成果,教师要引导学生主动参与,鼓励学生积极参与,保障全班三分之二以上的学生参与展示,力争黑板不留空白,让学生在参与中彰显自我,在展示中提高自我。没有在黑板上展示的同学,也要积极融入展示活动,可以随时上前标出展示中的“错误”,并写出自己的意见。书面展示结束后,教师根据学生的作答情况,有策略地请出多名学生向全班同学讲解自己解题的思路和过程,在讲解中,全体同学参与互动,有疑则问,有问则答,同时从思路、表达等方面对学生进行评价。

前4个问题的设计主要是为了完成“用一次函数图象解一元一次方程和一元一次不等式”的课时目标,它是课时重点,所以,自学时间要充裕,展示活动要充分,交流讲解要全面。第5个问题是本节的教学难点,学生很难独立完成,教师要组织学生互动探究,鼓励学生迎难而上,同时点拨释疑,引导思路,帮助学生自己逐步得出结论,并展示在黑板上。教师强调后,根据学生的学情分层提出要求。

三、训练提升。

完成的学生由教师检查评价后,做课后作业,同时承担帮助组内学困生完成训练题的任务。待全班学生基本完成后,抽查3名以上学生到黑板上讲解。问题二有多种解题思路,教师要引导学生发散思维,用不同的方法解决问题,体会一次函数、一元一次不等式、一元一次方程之间的联系和作用,为下一课时的学习做好铺垫。

四、学习评价。

教师对课堂目标的完成情况以及学生的学习情况、学习状态、参与程度、知识掌握程度进行课堂学习综合评价。这一个环节不是孤立存在的,它贯穿于课堂教学的全过程,教师在每个环节,都要对学生学习活动进行适时评价,对表现积极、学习自主的学生进行表扬,对稍差的学生提出改进的办法,促使他们进一步掌握学习数学的方法,激励全体同学高效率地参与课堂学习,生成知识,提高能力,从而有效地完成课时目标和任务。

一次函数教案篇十三

"一次函数的性质及其图象"是第十七章的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,可以让学生加深对一次函数概念的理解并学会通过函数的图象来求解一次函数,真正理会"数形结合"这一重要数学思想,并结合实际生活的例子,培养学生各种能力和发散性思维,为日后反比例函数,二次函数及其图象的教学做好准备,起到承上启下的重要作用。

2,教学重难点。

重点是一次函数性质及其图象。一次函数性质及其图象的教学是初二的重要内容,这是建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。

设计意图:旨在明确教材的地位和作用,理解知识的内在联系才能创造性的使用教材。

知识目标:理解一次函数的性质及其图象,学会性质判断函数值大小,及用数形结合的思想方法求函数值。

能力目标:培养学生观察,分析的能力,数形结合的能力及与他人协作学习的能力,培养学生创造性思维和逻辑推理的能力,以及学数学用数学的能力。

情感目标:体现了知识来源于实践,而运用于生活,同时渗透转化的思想,让学生体验客观事物是不断运动发展变化的,而事物之间又总是互相联系,互相制约的辨证唯物主义观点。

设计意图:进行"多元"目标设计,重在贯彻新课标,体现学生发展的教育理念。

采用启发式和讨论式相结合等教学方法,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情。

"授人以鱼,不如授人以渔",在教学过程中,还可以通过编故事,编题目,学生分组讨论等手段培养学生主动观察,主动思考,自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。学生随时对所学知识产生有意注意,符合学生认知水平,培养了学习能力。

设计意图:以建构主义理论为指导,要求学生学会知识,更要求学生会学知识。

本节课还将采用多媒体课件教学,辅之与投影图片等。

设计意图:多媒体教学增强了教学的直观性,增加教学容量,提高教学效率。

在本节复习课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发,引导为教师的'责任。

话图象,思性质:理解并巩固一次函数性质及其图象;

让学生板演画一次函数图象y=x—2;

同桌互提问题。

设计意图:培养学生自己动手的能力。

小试身手:发挥学生的主观能动性,使学生学会知识,而且会学知识;

通过以上一次函数的图象,回答下列问题:

根据前面所画图象中,x取何值时,y0;

y取何值时,x0;

设计意图:培养学生互相交流,互相协作的能力,加深对一次函数性质的理解。

大显身手:利用一次函数的性质来解决一些实际问题。

1,下图表示一辆汽车从出发到停止的行使过程中速度(v)随时间(t)变化的情况,下列判断错误的是()。

汽车从出发到停止,共行使了14分;

汽车保持匀速行使了8分;

出发后4分到12分之间,汽车处于停止状态;

汽车从减速行使到停止用了2分。

若把v改为s,你能叙述4—12小时的情况吗。

自己编一个故事,叙述这个图象所表达的意思,

v(米/分)。

50。

041214t(分)。

2,图中表示骑自行车和摩托车者沿相同路线有甲地到乙地行使过程的函数图象,两地间的距离是80千米,请你根据图象回答解决下列问题。(请学生自己设计问题,告诉给其他组同学解决,进行比赛,适时对发言学生进行表扬,以资鼓励)。

y摩托车。

80。

自行车。

40。

0348。

设计意图:让学生体会数学来源于实践又应用于实践,通过学生自己编故事,出题目等活动激发学生的学习积极性和主动性,调动学生的求知欲,让学生在愉悦,热烈的氛围中获取知识。

提问:1,通过这一节课的学习,大家有那些体会和收获。

你能用所学的一次函数的性质来解决生活中的实际问题吗。

这节课我们学习了那些数学思想方法。

(课堂由学生自由发言,畅谈感受和体会,最后由教师归纳,总结)。

设计意图:让学生自己小结,活跃了课堂气氛,做到了全班参与,理清了知识又强化了重点,更培养了学生的能力。

必做题p473,5,9。

选做题p4710。

设计意图:作业分层次布置,体现了因材施教原则,让不同的人在数学上有不同的发展。

总之,在整个教学过程中,学生通过动手,动脑,动口等活动,主动探索,发现问题,互动合作,解决问题,归纳概括,形成能力。增强教学应用意识,协作学习意识,养成及时归纳总结的良好习惯,使学生的主体地位得以实现。又根据学生的基础不同,特安排必做题与选做题,更体现了应材施教这一举措,使全体学生都有所获。

一次函数教案篇十四

1、知识差异。初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。

2、学习方法的差异。初中学生模仿做题,反复训练。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。

3、学生自学能力的差异。初中学生自学能力低,基本上学生不需自学。但高中的知识面广,知识全部要教师训练完高考中的习题类型是不可能的,学生必须自学才能深刻理解和创新来适应。

4、思维习惯上的差异。初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维,提高学生的思维递进性。

5、定量与变量的差异。初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。

将本文的word文档下载到电脑,方便收藏和打印。

一次函数教案篇十五

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明。

对于认知主体――学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、教学过程。

(一)感知身边数学。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

教学引入。

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示。

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质―边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]。

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课。

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质。

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]。

动画演示:

场景三:矩形的性质。

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]。

动画演示:

场景四:菱形的性质。

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]。

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

(二)享受探究乐趣。

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦。

1、抢答题。

2、旅游问题。

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获。

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地。

1、数学日记。

2、布置作业。

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。

四、教学设计反思。

1、贯穿一个原则――以学生为主体的原则。

2、突出一个思想――数形结合的思想。

3、体现一个价值――数学建模的价值。

4、渗透一个意识――应用数学的意识。

一次函数教案篇十六

本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:

本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习"用函数观点看方程(组)与不等式"的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习"数形结合"这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)教学目标。

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识目标:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

能力目标。

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度目标:

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)教学重点难点。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

1、教学方法。

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导。

1、应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

(一)、创设情境,导入新课。

活动1:观察:

展示学生作的函数图象(课本p41做一做),强调列表及图象上的点的对应关系。

1.课前让两名学生将图像画到黑板上,以备上课时应用。

2、课上展示学生函数图像作业,既为学生完成作业情况检查,又为本节课打下基础。

这样安排的目的:

1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

2、教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动2、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动3:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动4:展示"上下坡"材料,解决象限问题。(多媒体展示)。

目的:让学生触发漫画中"上下坡"的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结。

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)。作业布置。

加强"教、学"反思,进一步提高"教与学"效果,

做课本42页44页习题。

一次函数教案篇十七

今天我说课的内容是人教版八年级上册第十四章一次函数第一课时,本节内容四个课时完成。我设计的是第一课时的教学,主要内容是一次函数概念。学生已经学过了正比列函数之后来学习一次函数。一次函数既为前面学过的正比列函数知识得以概括和升华,也为后面学习函数知识打下了坚实的基础,因此,一次函数的学习起到了承上启下的作用。

1.知识技能目标。

(1)掌握一次函数的概念和解析式的特点;

(2)知道一次函数和正比列函数的关系;

(3)会利用一次函数解决简单的数学问题。

2.过程和方法。

(1)通过登山问题和正比例函数的概念引出一次函数的概念,培养学生的探究能力;

(2)在教学过程中,让学生学会知识迁移、以及类比的思想。

3.情感和态度。

(1)通过“登山问题”的研究,体会建立函数模型思想;

(1)通过本节课的学习,向学生渗透数学和实践生活的紧密联系。

1.一次函数的定义和解析式的特点;

3.一次函数定义的应用以及解决相关的问题。

一次函数和正比列函数的关系以及一次函数的应用。

二、学情分析。

学生已经学过了正比列函数的相关知识,并结合实际的情境认识了正比例函数的意义、图像和性质以及一元一次方程等相关的知识。能利用正比列函数的思想解决简单的实际问题,为学生学习一次函数奠定了基础。

三、学法分析。

用观察、思考、概括、总结、归纳、类比、联想是学法指导的重点。

四、教法分析。

采用“引导------发现式”的教学法。

五、教学过程。

一次函数教案篇十八

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点。

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标。

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明。

对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。

(一)感知身边数学。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣。

1、探究一次函数与二元一次方程的关系。

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

2、探究一次函数与二元一次方程组的关系。

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦。

1、抢答题。

2、旅游问题。

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获。

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地。

1、数学日记。

2、布置作业。

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。

四、教学设计反思。

1、贯穿一个原则以学生为主体的原则。

2、突出一个思想数形结合的思想。

3、体现一个价值数学建模的价值。

4、渗透一个意识应用数学的意识。

《一次函数与二元一次方程(组)》教案。

教学目标。

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点。

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课。

1、探究一次函数与二元一次方程的关系。

填空:二元一次方程可以转化为________。

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

2、探究一次函数图像与二元一次方程组的关系。

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式。

解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。

解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题。

(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

5、旅游问题。

古城荆州历史悠久,文化灿烂。

【本文地址:http://www.xuefen.com.cn/zuowen/13012899.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档