多边形面积教学设计大全(19篇)

格式:DOC 上传日期:2023-11-22 07:20:03
多边形面积教学设计大全(19篇)
时间:2023-11-22 07:20:03     小编:文轩

规划是制定目标、实现梦想的关键步骤。写总结时,我们应该注重细节的把握,对过去的经历进行客观的分析和总结,不可遗漏或忽视重要的细节。看看以下总结的参考案例,或许能给你提供一些写作思路。

多边形面积教学设计篇一

教学内容:。

五年级第96--97页整理和复习及练习十九。

教学目的:。

1、通过整理和复习,使学生进一步理解和掌握多边形面积计算公式,能正确、灵活地运用公式进行有关计算,解决一些简单的实际问题。

2、通过操作、观察、比较,发展学生的空间观念,建立良好的知识结构,培养学生的创新意识。

3、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。

教学重点:。

整理完善知识结构、灵活解决实际问题。

教学难点:。

教具、学具准备:。

信封、内装用破纸剪制的三种图形,一张写着长8米,宽6米的长方形的纸。

多边形面积教学设计篇二

整理和复习。

1、通过复习,使学生理清各种平面图形面积计算公式之间的关系。

2、使学生能够应用面积计算公式,熟练计算平行四边形、三角形、梯形和组合图形的面积。

3、能灵活运用所学知识解决有关的实际问题。

熟练计算平行四边形、三角形、梯形及组合图形的面积。

平行四边形、三角形、梯形的磁片。

一、创设情境,揭示课题。

1、想一想,本单元我们学习了哪些知识?

揭示课题:今天这节课我们对第五单元的知识进行整理和复习。

2、在小组内说一说,你学会了什么?

二、知识梳理,形成网络。

1、复习多边形面积计算公式。

老师根据学生所说,演示转化过程,形成如教材96页的板书。

(2)从整理图中能看出各种图形之间的关系吗?

学生回答后老师简要小结。

2、练一练:

老师出示下题让学生独立完成后集体核对。

选择条件分别计算下列各图形的面积。

3、师:刚才复习的是基本图形的面积,而由几个基本图形组合而成的图形叫什么?

出示第96页的第2题,让学生自己独立完成。

集体核对时让学生说一说自己的几种方法。

学生可能会想到下面几种方法。

比较哪种方法比较简便?

三、应用拓展。

1、练习十九第1题。

(1)让学生审题,说一说解题步骤。

(2)独立完成。

(3)小组交流,说一说你的发现。

(4)全班交流。

师小结:几个图形都在两条平行线之间,说明它们的高是相等的,在高相等的条件下,面积不等,说明它们的高都不等。

2、练习十九第4题。

(1)先让学生独立完成第1小题,集体核对。

想一想该如何摆放小树?让学生在草稿本上画一画示意图。

集体订正,展示。

四、小结:说一说今天这节课最大的收获是什么?

五、课堂作业:练习十九第2、3题。

视觉冲击波。

1、纷繁数据的视觉冲击波。

教材97页第4题在仅仅只有12平方厘米的图示中共出现16个数据,可谓是场数据“盛宴”。这些纷繁的数据造成的强力视觉冲击波使学生们个个头昏眼花。虽然大家从图中清晰可辨圣诞树的面积被分成就是求三角形、两个梯形和一个长方形面积,但在实际求组合图形面积过程中他们就是被这些数据“缠绕”,无法“解脱”。全班在规定的时间内仅5人列式计算正确。

冲击波主要干扰到所有图形底的长度。无论是三角形的底,还是梯形的上下底都是学生易混易错之处。看来下次再教时,可利用不同颜色的彩笔勾画不同的图形,这样不仅能增强视觉效果,而且还能起到一定的辅助作用。

2、图案“海洋”的视觉冲击波。

第4题第2小题与练习第3题要求不同。第3题只要求出“大约”结果即可,而第4题却不能简单地用手工纸的面积除以小树的面积,它需要考虑实际的排列情况。教学伊始,我是通过画简单示意图的方式带领学生通过逻辑推理来解决。大家共想到两种剪法:一种是将圣诞树竖着依次排列共可剪5棵;另一种是将圣诞树横着依次排列,每排3棵,可剪2排,所以共可以剪6棵。在此基础再想有所突破就难了。此时,我顺势出示课前按标准尺寸剪好的“圣诞树”与手工纸框架图,请学生上台边展示并验证刚才的发现。通过实际操作许多学生都从第二种剪法找到突破口,“见缝插针”地将树的棵数由6提高到了8。喜悦的心情在同学们心中传播,“还能剪出更多树吗?”的想法一直萦绕在大家的脑中。

学生中有人(魏紫瑞)指出按第3题的解法,这张纸大约可以剪出9棵这样的树。真的能行吗?《教学用书》中指明最多只能剪8棵呀!可这群孩子“明知山有虎,偏向虎山行”。不多久就有一名学生(王菁)最先“插树”成功。(如图)。

通过验证8+8+2+3=21厘米,这种摆放正好充分利用了纸的宽度,摆放成功。班上立即掌声雷动,这自发的掌声不仅仅是对她结果的充分肯定,更是对她敢于挑战权威精神的赞扬。同学们的研究热情此时达到沸点,一发不可收拾。9棵可行,那么10棵还能行吗?这时,我已经是欲罢不能。多名学生上台尝试后发现如果按正规摆法会“缺胳膊少腿”,但他们尝试将树斜着放在空隙中时再次成功。这次我无法通过计算来验证是否合理了。

欣赏着图案“海洋”带来的视觉冲击,使我情不自禁地回味起同学们的精彩发现,我眼仍旧浮现出他们一张张成功后的笑脸,我深深地被这虽然色彩单调却凝聚着学生智慧的图案所折服。

多边形面积教学设计篇三

从这个单元的教学中,发现了很多值得反思的问题,有待于今后改进。

(一)多机械记忆,缺灵动思考。

在推导平行四边形、梯形和三角形的面积公式时,学生的参与度是很高的。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。不能很清楚的知道平行四边形的底和高与拼成的长方形的长和宽是对应相等的。当一个图形里面出现几条高和底时,有较多的学生不能正确的选择数据进行计算。有些学生甚至把题目中所有的数据都用上了。学生的反应,促使我对课堂教学进行思考,我觉得要从以下三个方面进行改进。首先,要引导学生进入主动学习的状态。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后推测出面积公式等实践活动,理解相关面积公式的来龙去脉;其次,在教学过程中也要让学生明白多边形的面积计算公式要选择对应的底和高,并且可以在教学的过程中适当出一些有关这方面的练习,加深学生对公式的理解。最后,学生能够说出来的,作为老师尽量不要代替学生说出来。我老是担心学生,代替学生给说出来,在以后的教学中需要特别注意了。

(二)面积单位进率严重遗忘。

有关面积单位的进率是在学生三年级时教学的,现在五年级再用到,学生基本都忘了。作业中发现问题后,我在评讲作业时,重新进行了面积进率的推导,以其帮助学生回忆以前的'知识。但是作业中的情况反应,仍有错误存在。因此,在平时的练习中,需要引导学生复习容易遗忘的知识点,达到常温常新的目的,以减少遗忘。

(三)审题不清,甚至不会审题。

批改学生作业时,感受很深的一点是,很多学生都没有仔细审题的习惯。在写作业的时候常常不注意单位。遇到单位名称不统一时,应转化后再计算,结果,很多学生拿起来就做,根本没注意到这个问题。出现这样的情况,我分析原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯。

多边形面积教学设计篇四

回顾这一单元的教学,我个人比较注重学生参与知识的形成过程,即多边形面积公式的推导过程。这一单元的多边形主要是平行四边形、三角形、梯形三个图形。而每个图形面积公式的推导都是在前面已学的图形面积公式基础上学习的。在教学时,我一般提前让学生做好学具,如上平行四边形时,就让学生先剪好平行四边形,再通过引导提问引发学生思考:能否将平行四边形转化成我们以前学过的某个图形来研究呢?这之前,学生其实只学过长方形和正方形两种面积的求法,所以学生可以很快猜到转化成什么样的图形来研究,之后,我再放手让学生去尝试。当学生通过小组或同桌的交流将平行四边形转化成长方形后,我再进一步引导学生思考:现在的`图形与原来的图形哪些地方有联系呢?这样我们可以得出平行四边形的面积公式是怎样的?也许有人会觉得有必要这样麻烦吗。结论是这么简单的,绕来绕去。可是这一推导过程其实对学生思维能力以及对数学这门学科趣味性和动手能力的培养是非常有价值,学生对公式的理解绝大部分都很透彻。后面三角形和梯形面积公式的推导过程都是按照这个模式来教学的。这多年来教这个内容我都坚持这么做,可能上这样的课我花费的时间要比别人多,但我觉得非常值。

但是经过测评,我也发现这一单元中学生存在许多共性问题:一是单位换算问题。这一单元都是有关面积的问题,自然和面积单位分不开,面积单位是学生三、四年级学得内容,时间长了,单位换算进率和方法一部分学生出现了遗忘,还有一部分一点都不记得(当初学时都糊里糊涂)。这学期我们重点是研究面积公式,所以我没有投入精力给学生复习,有大部分学生在这方面失分。另外解决问题时单位不统一学生没有注意到,这些说明学生审题不够细致所至。第二个问题是拼成的平行四边形和原有的三角形之前的关系,特别是等底等高这个条件学生的理解还不够,虽然我口头有作过强调,但这个知识点最初出现时,也就是在上三角形面积公式的推理时我没有重点突出来强调,导致学生理解得不够深刻,所以后来再讲效果也不太理想,这些以后再上时一定要注意。第三个问题是在组合图形面积求法中。一是找不准对应的条件,如三角形要找出对应的底和高,特别是一些复杂的图形,学生有困难,这些在平时教学中要加强引导学生去找,去认。二是运用分割法求组合图形的面积后来要合在一起,添补法最后要将补起来的大图形减掉小图形面积,这些中偏下的学生容易遗忘,平时教学时要加以强调。

多边形面积教学设计篇五

本单元的主要教学内容包括:平行四边形的面积、三角形的面积、梯形的面积以及组合图形的面积。多边形面积的计算是在学生学习了图形的平移与旋转,掌握了这些平面图形的特征,以及长方形,正方形面积计算公式的基础上进行教学的。

回顾08学年五年级学生学习本章时,学生的问题主要有:

1、学生多边形面积公式的推导过程表达不清。课堂上每一个多边形面积公式的推导过程都是比较清晰的,无论是把平行四边形转化成长方形,还是把两个完全相同的.三角形(或梯形)拼成平行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程模糊,表达不清。

2、部分学生不会分辨底、高(不能正确画出高),进行组合图形面积计算时候,不能很好利用平行四边形对边相等、不能创造性地通过虚线清晰地把图形进行分解,从而引起计算错误。

3、审题不清,经常不注意单位的异同,面积计算结果经常用长度单位。

为了有效地解决类似问题,我主要采取了以下措施:

1、重视动手操作、观察与交流汇报。

本单元面积公式的推导都是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本单元教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,却忌由教师带着做。

2、引导学生探究,渗透转化思想。

本单元面积的推导都采用了转化的方法。在本单元的教学中,以学生的探究活动为主要形式,教师加强指导和引导。通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法。利用讨论和交流等形式,要求学生把自己操作转化推导的过程叙述出来,以发展学生的思维和表达能力。

3、注意培养学生用多种策略解决问题的意识和能力。

运用转化的方法推导面积计算公式和计算多边形面积,可以有多种途径和方法。教师要鼓励学生从不同的途径和角度去思考和探索解决问题。引导学生通过观察,作虚线等方法,清晰地认识一个简单图形、组合图形的构成,并能正确地进行计算。

4、在教学中培养审题习惯、检查习惯等等。

学生出现审题不清,单位出错,原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯,并强调学生完成计算后,应该对答案和单位进行检查,从而杜绝不写单位和写错单位的不良行为。

将本文的word文档下载到电脑,方便收藏和打印。

多边形面积教学设计篇六

第24~25页。

1、在系统复习的基础上通过练习加以巩固,使学生掌握多边形面积面积的计算公式,并能准确熟练地加以运用,解决简单的实际问题。

2、培养学生收集信息的能力和灵活运用知识解决生活中的实际问题的能力。

3、灵活、熟练地应用面积计算公式,解决有关实际问题。

3、培养学生良好的合作意识。

一、复习各图形面积的计算公式:

要求学生分别用文字的和字母的规范表达各公式,写在作业本上。

二、练习。

1、第6题填表指名分别说说每题的结果,如果有错,再指名说说应该怎么算。3、2、第7题读题后,强调:这道题要分两步,先算面积,再算题中的问题。指名说说算面积的方法。方法一:20×9-1×9(提醒:减去的也是一个平行四边形,不是减“1”)方法二:(20-1)×9(转化:可以假设那条小路是在边上,那平行四边形的底就是19米了。)比较两种方法的联系,算一算。

3、第8题读题后,估计有的学生不能很好的理解“每个三角形的腰长8米”。可画其中的一个,让学生理解这个腰长,其实也就是直角三角形的底和高分别是8米。

4、第9题,读题后模仿第7题的解题步骤,指名板演。

注意的问题:

(1)算出的面积57平方米是不是就是57千克?应该用怎样的算式表达得才比较规范?

(2)算出需要油漆57千克后,后面怎么写才规范?

5、第10题。读题、看读图。

(1)说说该题钢管的排列特点。说说你联想到了什么图形?(梯形)提醒:横截面指名说说算梯形的几个关键数据:上底(9)、下底(14)和高(6)可以怎么算:(9+14)×6÷2=69(根)。

(2)根据排列特点,如果下面还有钢管,分别是多少?如果最下面一排是16根,怎么算?完成板书:9+10+11+12+13+14+15+16观察该算式,你可以怎么算?方法一:用(头+尾)乘个数除以2的方法方法二:凑十法比较两种方法,哪个更简单?为什么?指出:凑十法是低年级时学得的方法,这题用方法一更简单,它适用于更多的情况。“头”相当于“上底”,“尾”相当于“下底”,“个数”相当于“高”。

(3)联想:如果这堆钢管原来还有很多,最上面是1根,它是什么形状?怎么算?为什么明明像三角形,却不用三角形的面积公式来计算?得出:它其实是一个梯形。

(4)可能会有的学生会和等差数列的方法联系后回答问题。两种思路的对比和联系。

(5)补充:等差数列的有关知识。

三、评价与反思。

学生根据自己的表现能得几颗x,就把几颗x涂上颜色。

三、布置课外作业:

1、在第131页上剪一个三角形和一个梯形。

2、练习11题。

多边形面积教学设计篇七

在教学多边形这一个单元时,在新授课时,强调了让学生自己动手实验,找出相互之间的联系,推导出各自的面积计算公式,因为在这一环节中用时较多,常常导致后面安排的练习题不能全部在课堂上完成;练习课时,由于时常注重了对后进生掌握情况的关注,比如说多请他们回答问题,尤其让他们多说说思考过程,这样的结果致使事先安排的习题又一次不能全部完成。

导致出现这种现象的原因是什么呢?经过反思,应该是“精讲多练”做得还不够。有时候,作为教师时常怕学生不理解,总是多讲、反复讲,自以为讲清楚了,学生也就听懂了,事实果真会这样吗?未必。学生他有自己的思维方式,有时候老师越讲他甚至越糊涂,只有在具体的练习中他才会真正掌握。

多边形面积教学设计篇八

1、在系统复习的基础上通过练习加以巩固,使学生掌握多边形面积面积的计算公式,并能准确熟练地加以运用,解决简单的实际问题。

2、培养学生收集信息的能力和灵活运用知识解决生活中的实际问题的能力。

3、灵活、熟练地应用面积计算公式,解决有关实际问题。

3、培养学生良好的合作意识。

一、复习各图形面积的计算公式:

要求学生分别用文字的和字母的规范表达各公式,写在作业本上。

二、练习。

1、第6题填表指名分别说说每题的结果,如果有错,再指名说说应该怎么算。3、2、第7题读题后,强调:这道题要分两步,先算面积,再算题中的问题。指名说说算面积的方法。方法一:20×9-1×9(提醒:减去的也是一个平行四边形,不是减“1”)方法二:(20-1)×9(转化:可以假设那条小路是在边上,那平行四边形的底就是19米了。)比较两种方法的联系,算一算。

3、第8题读题后,估计有的学生不能很好的理解“每个三角形的腰长8米”。可画其中的一个,让学生理解这个腰长,其实也就是直角三角形的底和高分别是8米。

4、第9题,读题后模仿第7题的解题步骤,指名板演。

注意的问题:

(1)算出的面积57平方米是不是就是57千克?应该用怎样的算式表达得才比较规范?

(2)算出需要油漆57千克后,后面怎么写才规范?

5、第10题。读题、看读图。

(1)说说该题钢管的排列特点。说说你联想到了什么图形?(梯形)提醒:横截面指名说说算梯形的几个关键数据:上底(9)、下底(14)和高(6)可以怎么算:(9+14)×6÷2=69(根)。

(2)根据排列特点,如果下面还有钢管,分别是多少?如果最下面一排是16根,怎么算?完成板书:9+10+11+12+13+14+15+16观察该算式,你可以怎么算?方法一:用(头+尾)乘个数除以2的方法方法二:凑十法比较两种方法,哪个更简单?为什么?指出:凑十法是低年级时学得的方法,这题用方法一更简单,它适用于更多的情况。“头”相当于“上底”,“尾”相当于“下底”,“个数”相当于“高”。

(3)联想:如果这堆钢管原来还有很多,最上面是1根,它是什么形状?怎么算?为什么明明像三角形,却不用三角形的面积公式来计算?得出:它其实是一个梯形。

(4)可能会有的学生会和等差数列的方法联系后回答问题。两种思路的对比和联系。

(5)补充:等差数列的有关知识。

三、评价与反思。

学生根据自己的表现能得几颗x,就把几颗x涂上颜色。

三、布置课外作业:

1、在第131页上剪一个三角形和一个梯形。

2、练习11题。

多边形面积教学设计篇九

苏教版九年义务教育小学数学第八册第66页复习第1~6题。

教学目标。

1.进一步掌握平行四边形、三角形、梯形面积公式的推导过程,能运用公式正确、熟练地计算它们的面积,并能解决一些简单的实际问题。

2.培养初步的想像能力和抽象概括能力。

3.渗透在生活中处处有数学,事物间互相联系互相转化的辩证唯物主义观点。

教学过程。

一、激情导入。

1.微机出示餐厅图。

谈话:这是老师家里的餐厅,如果按这样的方案来装演,你需要了解哪些信息?(动画演示各种装饰材料的形状及装饰过程。使学生感到铺地砖需要知道地面的面积,做窗帘用多少布也与面积有关系。)。

随着学生的回答板书:平行四边形的面积、三角形的面积、梯形的面积、长方形的面积、正方形的面积。

谈话:说得真好。老师真希望你们人人争当小老师,做学习的主人。这节课我们要比一比,谁的收获多。

二、自主整理。

1.投影出示小组讨论题。

(1)这5种图形的面积分别是怎样计算的?

(2)这些面积计算公式是怎样推导出来的?

小组讨论。借助课前准备的学具,说说推导过程,每人可选自己最喜欢的图形说给小组成员听。

全班交流。学生选择图形说面积公式的推导过程。

2.整理完善知识结构。

谈话:在小学阶段,我们首先学习的是长方形的面积计算公式,这是为什么?

结合学生汇报,指出:正方形、平行四边形、三角形、梯形的面积公式都与长方形的面积公式有联系。你能不能利用老师发的学具,把5种图形移一移、摆一摆,让人一眼就看出这些图形面积公式推导方法之间的联系。比一比,哪个小组摆得好!指名摆,并说明这样摆的理由。

看网络图,你发现了什么?使学生进一步认识到由长方形面积计算公式推导出正方形、平行四边形面积计算公式,由平行四边形面积计算公式推导出三角形、梯形面积计算公式。

讲述:由此发现,新旧知识之间有着密切的联系,我们在学习新知识时,都是把它转化成旧知识学习的。转化是一种很重要的思想,以后你在学习新知识时就可以运用转化的方法把它转化成学过的知识,再进行研究。

三、运用公式。

1.做复习第1题。

学生独立解答,核对。

提问:计算时注意什么?

2.判断正误。

(1)三角形面积等于平行四边形面积的一半。()。

(2)长方形的面积是与它等底等高的三角形面积的2倍。()。

(3)两个面积相等的三角形可以拼成一个平行四边形。()。

(4)下图中平行四边形与长方形面积相等。()。

(5)如果一个平行四边形和一个长方形面积相等,底和长也相等,那么高和宽也相等。()。

(6)三角形的底越长,它的面积就越大。

3.解决老师家餐厅装潢的问题。(出示餐厅图)。

谈话:数学与我们的生活密切相关,还记得王老师家的餐厅吗?就让我们一起来解决大家提的问题吧。

(1)地面铺地砖问题:餐厅长4米,宽3米,高3米。地面铺的是边长5分米的方砖,算一算,装修时至少用了多少块方砖?(只要列式)学生独立完成。

(2)用同样的花布做成这样形状的窗帘和冰箱装饰套至少要多少布?

学生独立计算。

提问:你们是怎么算的?按你们算出的面积买布行吗?为什么?

学生讨论。

谈话?想问题时要联系生活实际。考虑到商店里的布往往和裁剪成的布块形状不同,再加上缝制时要缝边,所以买布时要多买一些,这也是刚才提出的问题中加上“至少”两个字的原因。

四、总结收获。

提问:这节课我们解决了许多问题,谁能说说,哪些给你留下了深刻的印象?

总评。

荷兰著名的数学教育家弗赖登塔尔强调:“学习数学的惟一正确的方法是实行‘再创造’,也就是学生本人把要学的东西发现或创造出来,教师的任务是引导和帮助学生进行这种再创造的工作,而不是把现成的知识灌输给学生。”本节复习课充分体现了这一点,引入新课富有挑战性,通过争当小老师,解决生活难题的情境,激发学生学习的热情。课中给学生提供自主探索的时间和空间,安排了大量有利于学生主动地进行操作、观察、交流的数学活动,给了学生较多的广泛参与的机会,而学生在自主探索和合作交流的过程中也进一步加深了对数学知识和数学方法的理解。整节课充分体现了学生是数学学习的主人,教师只是数学学习的组织者、引导者和合作者。

多边形面积教学设计篇十

[教材简析]。

通过一个学期的学习,孩子已经熟知所学的多边形面积计算公式,知道这些公式的推导过程,并能熟练的应用这些公式解决实际问题。

在设计这一节课的时候,就一直在考虑怎样将本节课上出新意,使孩子在复习的时候也能够有新的收获,为此我从以下的思路设计了本节课:

1、复习梳理环节引导学生复习回顾,从关注相同部分的表达形式到学习顺序的联想,使之体悟几个图形计算方法的内在联系,再借助多媒体课件,把分散学习的五种平面图形面积计算思路,通过集中梳理突显出来,构建知识的模型。

2、练习巩固环节,对练习巩固的起点要求适当提高,从应用有关图形的面积公式,到一题多解,表达不同的分析思路并走向自我设计寻求优化。

3、创新理解环节将复习定位于知识理解的拓展与勾连,让学生发现联系,获得学习新意,感受图形与生活的密切联系,及学习数学的快乐。

[教学目标]。

3、让学生经历动手、实践与探索的`数学活动过程,解决一些有关稍复杂的面积计算问题,拓展对相关面积计算问题的新认识、新经验,促进其创新意识和实践能力的发展。

[教学重点]。

2、能够正确、熟练地进行相关计算,提高应用多边形面积计算公式解决实际问题的能力。

3、切实感受“我创造,我快乐”

[教学难点]。

[教学准备]图形(五种基本图形、组合图形)、课件,学生自备完全一样的梯形、三角形各两个。

[教学过程]。

一、导入谈话。

同学们,我们已经学过了“多边形的面积计算”,今天我们一起梳理一下面积计算方法的推导与应用吧。

(板书课题。)。

二、复习梳理。

(一)引导图形及其面积计算公式。

1、引出所学多边形。

我们会计算哪些平面图形的面积?(根据生答在黑板上贴基本图形:长方形、正方形,平行四边形、三角形、梯形。)。

过渡:还记得它们各自的面积计算公式吗?能用自己喜欢的方法整理一下吗?

2、自主整理。

1)投影出示小组讨论题。

(1)这5种图形的面积分别是怎样计算的?

(2)这些面积计算公式是怎样推导出来的?

小组讨论。借助课前准备的学具,说说推导过程,每人可选自身最喜欢的图形说给小组成员听。

全班交流。同学选择图形说面积公式的推导过程。

2)整理完善知识结构。

谈话:在小学阶段,我们首先学习的是长方形的面积计算公式,这是为什么?

结合同学汇报,指出:正方形、平行四边形、三角形、梯形的面积公式都与长方形的面积公式有联系。

看课件,你发现了什么?使同学进一步认识到由长方形面积计算公式推导出正方形、平行四边形面积计算公式,由平行四边形面积计算公式推导出三角形、梯形面积计算公式。

小结:由此发现,新旧知识之间有着密切的联系,我们在学习新知识时,都是把它转化成旧知识学习的。转化是一种很重要的思想,以后你在学习新知识时就可以运用转化的方法把它转化成学过的知识,再进行研究。

【设计意图】复习课上教师让同学通过摆图形,回忆推导过程,由“在小学阶段,我们首先学习的是长方形面积计算公式,这是为什么?”这一问题展开讨论,推动同学自主地把各种平面图形的面积计算与长方形联系起来。让同学通过操作、观察、分析,发现知识间的内在联系,顺利地形成合理的认知结构。既有效地激发学生的学习兴趣,又使枯燥的复习课变得直观、形象,让学生更乐意学数学。

三、运用公式。

过渡:你能用这些公式解决生活中的问题吗?

(一)、基本应用练习。

1、投影习题1:

谈话:只列出算式,不计算。

投影习题2:计算它的面积?你能想出几种算法?

(交流后,让学生选择自己喜欢的一种做一做,说明要选择合适的方法。)。

3、创新性练习。

谈话:老师有一个高难度的问题,你敢接受挑战吗?

(1)出示卡片,怎样计算它的面积呢?

投影要求:

1、在小组中轮流说说自己的想法。

2、组长画分割线,剪开。

3、合作计算卡片面积(测量时,取整厘米数或者整半厘米数)。

(2)班内交流。

(3)你能用你刚才剪出的图形拼出更漂亮的图案吗?

【设计意图】:通过让孩子自己设计、选择合适的方案计算面积,培养其应用所学知识解决实际问题的能力,同时也培养他们分析、归纳能力。作为期末复习,对练习巩固的起点要求适当提高,从应用有关图形的面积公式,到一题多解,表达不同的分析思路并走向自我设计寻求优化。学生在有效运用知识中层层提升,感觉成功,发展能力。

四、总结。

师:同学们,这一课我们复习了多边形的面积,请各自再谈谈学习体会,可围绕如下的内容交流:

1、我们自己找到了几种图形面积的联系:长方形和正方形如大树的树根,平行四边形如树干,三角形和梯形如树枝与树叶。

2、创新理解,

【设计意图】:通过引导孩子交流总结谈学习的体会,让孩子进一步梳理自己的知识结构,巩固课堂中刚刚建构的认知模型,使之确实感到复习旧知识,也能有新收获。)。

多边形面积教学设计篇十一

从这个单元的教学中,发现了很多值得反思的问题,有待于今后改进,《多边形面积》单元教学反思。

在推导平行四边形、梯形和三角形的面积公式时,学生的参与度是很高的。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。不能很清楚的知道平行四边形的底和高与拼成的长方形的长和宽是对应相等的。当一个图形里面出现几条高和底时,有较多的学生不能正确的选择数据进行计算。有些学生甚至把题目中所有的数据都用上了。学生的反应,促使我对课堂教学进行思考,我觉得要从以下三个方面进行改进。首先,要引导学生进入主动学习的状态。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后推测出面积公式等实践活动,理解相关面积公式的来龙去脉;其次,在教学过程中也要让学生明白多边形的面积计算公式要选择对应的底和高,并且可以在教学的过程中适当出一些有关这方面的练习,加深学生对公式的理解。最后,学生能够说出来的,作为老师尽量不要代替学生说出来。我老是担心学生,代替学生给说出来,在以后的教学中需要特别注意了。

有关面积单位的进率是在学生三年级时教学的,现在五年级再用到,学生基本都忘了。作业中发现问题后,我在评讲作业时,重新进行了面积进率的推导,以其帮助学生回忆以前的知识。但是作业中的情况反应,仍有错误存在。因此,在平时的练习中,需要引导学生复习容易遗忘的知识点,达到常温常新的'目的,以减少遗忘。

批改学生作业时,感受很深的一点是,很多学生都没有仔细审题的习惯。在写作业的时候常常不注意单位。遇到单位名称不统一时,应转化后再计算,结果,很多学生拿起来就做,根本没注意到这个问题。出现这样的情况,我分析原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯。

多边形面积教学设计篇十二

判断题。

2.等底等高的三角形可拼成一个平行四边形。()。

4.只要知道梯形的两底之和的长度和它的高,就可以求出它的面积。()。

5.两个周长相等的等边三角形,面积必相等。()。

将本文的word文档下载到电脑,方便收藏和打印。

多边形面积教学设计篇十三

本节课对多边形面积计算的知识点进行了全面的整理和复习。把长方形,平行四边形,三角形,梯形的面积计算紧密联系起来。着重解决组合图形的面积计算。在整个教学过程中,我始终贯彻了以下几点:

新课改强调“要使学生体会数学与自然及人类社会的密切联系,了解数学的价值,增强应用数学的意识。”在本节课中,我时刻提醒学生注意数学知识与日常生活的联系,激发学生运用数学知识探索和解决实际问题的强烈欲望,既显得亲切自然,也为整理复习的开展创设新的情境。

在课程设计中,充分发挥学生的主动性,创造尽可能多的机会让学生展示自己学习的收获和聪明才智。既可以是独立的讲解,也可以是同伴的合作,或者是互相的提问,答辩,质疑。所以,我安排后进生,交流基础知识的回顾;让中等生进行复习整理提高;到实践与应用时,充分发挥优等生的优势,辨论用多种方法合理解题。整个过程中,始终让学生通过多种形式的交流,来揭示知识之间的联系,认识转化迁移等数学思想。

组合图形面积计算是长方形、正方形,平行四边形,三角形与梯形的面积计算知识的发展,也是日常生活中经常需要解决的问题。在教学过程中,让学生自主解决组合图形面积计算的问题。再让学生动手操作,自主探究如何使用组合图形,转化为己学过的基本图形的过程中,首先让学生把这个图形,分解成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。在这个环节中,学生基本上都能够运用分割法或添补法把组合图形转化为所学过的基本图形。但在展示学生分法时,我忘记了将在巡堂时发现的个别学生,由于找不到相关条件,无法计算图形面积也进行展示和集体讨论,这是不足的地方。学生汇报了不同的分法后,就让他们用自己喜欢的方法进行图形的面积计算,然后让学生展示汇报,从中小结,用哪种分割法或添补法计算这个组合图形的面积更简单。这个环节花的时间比较多,跟前面的环节类似,结果导致后面的时间很紧,因此在今后教学中应多注意教学环节之间的内容设计,把握重点,尽量紧凑,及时发现问题和做出反馈。

当然,课堂上还存在一些不足。例如,对于有些学生表现好,能够正确地进行评价。而对于有些学生的亮点没有及时发现,评价不到位。且课堂纪律的组织,也有些欠缺。这些有待于自己在今后教学中,不断学习和探索。我深知:教师应该是用教材,而不是学教材,应引导学生走出课本,激活他们的创造性思维,使学生向多元化发展,让学生真正学到有价值的数学,获得必需的数学。

多边形面积教学设计篇十四

填空。

1、将一个活动的长方形框架拉成平行四边形,()变小了,()没有变。

2、一个三角形的底和高同时扩大3倍,它的面积将()。

3、在括号里填上适当的单位名称:

小明的高136(),体重是32(),他的课桌面大约是28()。

4、三角形的面积等于与它()的'平行四边形的面积的一半。

5、把一根铁丝围成一个长9分米,宽7分米的长方形,它的面积是()dm2如果把它改围成一个正方形,它的边长是()dm,面积是()dm2。

6、一个三角形的面积是10cm2,底是5cm,高是()cm,与它等底等高的平行四边形的面积是()cm2。

多边形面积教学设计篇十五

一、填空题(54分)。

1.用字母表示三角形、平行四边形和梯形的面积计算公式是()、()和()。

2.2.3m2=dm23200cm2=()dm2。

0.25m2=()cm26500平方米=()公顷。

3.一个平行四边形的底和高都是1.4m,它的面积是()m2,和它等底等高的三角形的面积是()m2。

4.一个直角三角形的两条直角边分别是0.3cm和0.4cm,斜边长0.5cm,这个直角三角形的面积是()cm2。

5.一个三角形的面积是240m2,高是40m,底是()m。6.两个完全一样的梯形可以拼成一个()。

2

7.一个正方形的周长是32dm,那么它的边长是()dm,面积是()dm。

8.一个平行四边形的面积是36m2,如果把它的底和高都缩小到原来的三分之一,得到的平行四边形的面积是()m2。

9.一个梯形的上底扩大2倍,下底也扩大2倍,高不变,那么它的面积扩大()倍。10.设计一个面积为24平方米的三角形,底为(),高为()。

11.在一个三角形里能画()条高,在一个平行四边形里能画()条高,在一个梯形里能画()条高。

12.一个正方形的周长是8.8米,面积是()平方厘米。

13.一块平行四边形的街头广告牌,底是12.5米,高是6.4米。如果要油饰这块广告牌,每平方米用油漆0.6千克,需要()千克油漆。

14.一辆汽车的后车窗有一块梯形的遮阳布,上底是1米,下底是上底的2倍,高是0.7米,它的面积是()。

15.平行四边形的一条边长9分米,这条边上的高是8分米,另一条边上的高是6分米,这个平行四边形的面积是(),周长是()。

16.梯形的上底是3.8厘米,高是4厘米,已知它的面积是20平方厘米,下底是()厘米。

二、判断题(12分)。

1.三角形的面积等于平行四边形的一半。()。

2.两个花园的周长相等,它们的面积也一定相等。()。

3.一个三角形的底扩大2倍,高不变,它的面积也扩大2倍。()。

4.同底等高的两个三角形,形状不一定相同,但它们的面积一定相等。()。

5.两个面积相等的梯形纸片一定能拼成一个平行四边形。()。

6.长方形的周长不变,将它拉成平行四边形,面积与原来的长方形面积相等。()。

三、选择题(12分)。

四、计算题。

57、一块梯形果园,上底是60m,下底是100m,高是20m。一共种植果树840棵,平均每棵果树占地多大?(保留一位小数)。

多边形面积教学设计篇十六

本节课是小学数学五年级第5单元82页整理和复习中的内容。这部分教材要求先把本单元学过的知识进行系统的整理,然后再通过混合练习复习巩固各种多边形面积的计算。在授课中结合自己对《新课程标准》以及《心理学》的理解,体现出一些创新理念:不是让学生机械的背诵和默写公式,而是通过情境引入、剪切拼摆、合作学习、创造想象。算法多样等各环节来实现人人学有价值的数学,人人掌握必须的数学,不同的人在数学上得到不同的发展。

教学目标:

1、知识性目标:引导学生回忆、整理多边形面积计算公式的推导过程,能熟练应用公式进行计算,适当渗透事物之间是相互联系的观点。

2.能力目标:通过观察、测量、拼摆等实践活动,培养学生动手操作、分析比较、总结概括以及探究、解决实际问题的能力。

3、情感与价值观目标:将知识学习与生活实际相结合,使学生感受到学习的乐趣,发展学生的创新思维。

说教法、学法。

1、尊重需要、显现主体。

教学中,不是由教师直接给出面积公式的复习内容,让学今被动接受。而是大胆放手,让学生自主回忆己学过的多边形面积公式的推导过程,予以汇报、展示成果。尊重学生的需要,尊重学生的主体地位。通过自主探究图形之间的内在联系,使学生对于转化这一重要数学思想有更深理解,从而进行学法指导。

2.激励创新加强整合。

精心设计练习,重视对学生思维能力的培养,打破求多边形面积一贯方法的定势,力求实现数学教学的开放性、发展性,使学生能动地构建知识体系。

说教学过程。

一、梳理知识结构。

师:试举例我们主要学过哪些多边形?

生:长方形、正方形、平行四边形、三角形、梯形。

师:我们主要研究了它们的什么?(周长和面积)。

师:你在生活中了解到有哪些图形?

生:尖屋顶是三角形,桌面是长方形。

师:下面我们一起来对学过的多边形面积进行整理和复习。

(设计理念:数学是人们在生产、生活中遇到问题进行思考研究而产生的。形象的`多媒体演示,不仅使学生认识到几何图形的由来,也必将激发学生的学习兴趣,并把所学知识应用到生活中去。)。

二、展示、完善知识结构。

回顾公式推导过程。

1、师:这里有许多大家学过的图形卡片,谁能领取一张说说它的面积公式?

(学生随意抽取,能说出面积公式即可,出现问题,指名纠正。)。

生1:我沿着过平行四边形的顶点的高剪开,将它们排成一个长方形。生2:我沿着过平行四边形底边上一点的高剪开,将它们拼成一个长方形。生3:还可以沿着两个顶点的高剪下,两个三角形,将它们排成一个长方形。

生4:其实沿着平行四边形内任意一条高剪开,都可以排成一个长方形。

您现在正在阅读的《多边形的面积》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!《多边形的面积》说课稿3、小组合作完成:回顾讨论三角形、梯形面积公式的推导过程。(教师巡视,个别指导。)。

生1:正方形是特殊的长方形,所以最基本的是长方形。

生2:平行四边形只在推导三角形和梯形而积公式时用到,最基本的图形是长方形。

(设计理念:让学生经历、回顾多边形面积计算公式的推导过程是本节课的一个重要目标。本环节中,学生采用动手实践、合作学习等多样化的学习方式去自主发现多边形面积之间存在的必然联系。)。

三、应用知识结构。

l、选择条件分别计算下列图形的面积。(单位:厘米)(图形略)。

2、计算组合图形面积,有几种方法就用几种方法。课本p96第2题。

(1)(105)(126)2+125。

(2)10(126)2+(6+12)52。

(3)(5+10)(126)2+65。

(4)12102+652。

(5)(5+10)1226(105)2。

(6)1210(6+12)(105)2。

3、左图是教室的一面墙,如果砌这面墙每平方米用砖185块,一共需要用多少块砖?

课本p97第2题。

4、下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?(剪一剪、算一算)。

(设计理念:基础知识与基本技能是学生学习的重点。教师通过练习反馈环节测评,学生对多边形面积计算公式的掌握和理解,训练学生思维的层次性、深入性和发展性。在组合图形面积计算方法的探索中,学生动眼观察、动脑思考、动手操作,把一个组合图形分解成几个已经学习过的基本图形,、达到练习趣味化、综合化。既培养了学生发散思维能力,又使学生在解决问题的能力和策略上得到培养。)。

四、小结。

通过这节课的学习,你有什么收获?

多边形面积教学设计篇十七

1.用字母表示三角形和梯形的面积计算公式是()和()。

2.2.3m2=dm23200cm2=()dm2。

0.25m2=()cm26500平方米=()公顷。

3.一个平行四边形的底和高都是1.4m,它的面积是()m2,和它等底等高的三角形的面积是()m2。

4.一个直角三角形的两条直角边分别是0.3cm和0.4cm,斜边长0.5cm,这个直角三角形的面积是()cm2。

5.一个三角形的面积是240m2,高是40m,底是()m。

6.两个完全一样的梯形可以拼成一个()。

7.一个正方形的周长是32dm,那么它的边长是()dm,面积是()dm2。

8.一个平行四边形的面积是36m2,如果把它的底和高都缩小到原来的3倍,得到的平行四边形的面积是()m2。

9.一个梯形的上底扩大2倍,下底也扩大2倍,高不变,那么它的面积扩大()倍。

10.设计一个面积为24平方米的三角形,底为(),高为()。

二、判断题。

1.三角形的面积等于平行四边形的一半。()。

2.两个花园的周长相等,它们的面积也一定相等。()。

3.一个三角形的底扩大2倍,高不变,它的面积也扩大2倍。()。

4.同底等高的.两个三角形,形状不一定相同,但它们的面积一定相等。()。

5.两个面积相等的梯形纸片一定能拼成一个平行四边形。()。

三、选择题。

1.一个平四边形的面积是4.2cm2,高是2cm,底是()cm。

a.2.1b.1.05c.2d.4.2。

2.学校篮球场占地面积约是0.6()。

a.公顷b.平方米c.米d.平方千米。

3.能拼成一个长方形的是两个完全一样的()三角形。

a.锐角b.等腰c.钝角d.直角。

4.已知梯形的面积是45dm2,上底是4dm,下底是6dm,它的高是()dm。

a.9b.4.5c.2.25d.455.等腰梯形周长是48厘米,面积是96平方厘米,高是8厘米,则腰长()。

a.24厘米b.12厘米c.18厘米d.36厘米。

四、计算题。

五、解决问题。

六、思考题。

一个三角形的底长5米,如果底延长。

1米,那么面积就增加1.5平方米,那么原来三角形的面积是多少平方米?

多边形面积教学设计篇十八

1、一个平行四边形的底长8厘米,是高的2倍,它的面积是(),与它等底等高的三角形面积是。

2、一个梯形的上底是16米,下底是24米,高30米,它的面积是()平方米。

3、一堆钢管,最上层有3根,最下层有13根,每相邻两层相差1根,这堆钢管一共有()。

4、一个直角三角形,三条边分别是10厘米、8厘米、6厘米,它的面积是(样的三角形拼成的长方形面积是()。

5、一个三角形和一个平行四边形的底相等,面积也相等,已知三角形的高是32厘米,那么平行四边形的高是()厘米。

6、一个平行四边形的面积是8平方分米,高是2分米,它的底是()。

7、一个近似梯形的花坛,高10米,上下底之和是16米,面积是()。

8、一个三角形的面积是6平方分米,底3分米,高是()。

9、用四根硬纸条钉成一个长方形框架,将它拉成一个平行四边形后,周长(),面积()。

10、三角形的底扩大3倍,高不变,面积会()。

11、0.45公顷=()。

12、两个完全一样的梯形可以拼成一个()形。

13、一个梯形上底与下底的和是15厘米,高是8.8厘米,面积是()。

14、平行四边形的底是2分米5厘米,高是底的1.2倍,它的面积是()平方厘米。

15、梯形的上底增加3厘米,下底减少3厘米,高不变,面积()平方米。

多边形面积教学设计篇十九

一、填空(每空1分,共13分)。

3.一个平行四边形的底是14厘米,高是9厘米,它的面积是();与它等底等高的三角形面积是().

5.工地上有一堆钢管,横截面是一个梯形,已知最上面一层有2根,最下面一层有12根,共堆了11层,这堆钢管共有()根。

6.一个三角形比与它等底等高的平行四边的面积少30平方厘米,则这个三角形的面积是()。

7.一个三角形的面积是4.5平方分米,底是5分米,高是()分米。

8.一个等边三角形的周长是18厘米,高是3.6厘米,它的面积是()平方厘米。

二、判定题(每题2分,共10分)。

1.两个面积相等的三角形,一定能拼成一个平行四边形.()。

3.两个完全一样的梯形,能拼成一个平行四边形.()。

4.把一个长方形的框架挤压成一个平行四边形,面积减少了.()。

5.两个三角形面积相等,底和高也一定相等。()。

三、选择题(每题2分,共8分)。

1.等边三角形一定是_______三角形.[]。

a.锐角;b.直角;c.钝角。

2.两个完全一样的锐角三角形,可以拼成一个________[]。

a.长方形;b.正方形;c.平行四边形;d.梯形。

a.高;b.面积;c.上下两底的和。

【本文地址:http://www.xuefen.com.cn/zuowen/14157217.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档