天文学的发展与人类文明的进步息息相关,对于了解人类文化和历史演变也具有一定的启示作用。总结是一个完善自我和提升自己的过程,要写一篇完美的总结需要我们不断学习。总结作为一种有实际运用价值的文体,在学习和工作中都扮演着重要的角色,让我们一起来学习和掌握写作技巧吧。
多边形面积教学设计篇一
[教材简析]。
通过一个学期的学习,孩子已经熟知所学的多边形面积计算公式,知道这些公式的推导过程,并能熟练的应用这些公式解决实际问题。
在设计这一节课的时候,就一直在考虑怎样将本节课上出新意,使孩子在复习的时候也能够有新的收获,为此我从以下的思路设计了本节课:
1、复习梳理环节引导学生复习回顾,从关注相同部分的表达形式到学习顺序的联想,使之体悟几个图形计算方法的内在联系,再借助多媒体课件,把分散学习的五种平面图形面积计算思路,通过集中梳理突显出来,构建知识的模型。
2、练习巩固环节,对练习巩固的起点要求适当提高,从应用有关图形的面积公式,到一题多解,表达不同的分析思路并走向自我设计寻求优化。
3、创新理解环节将复习定位于知识理解的拓展与勾连,让学生发现联系,获得学习新意,感受图形与生活的密切联系,及学习数学的快乐。
[教学目标]。
3、让学生经历动手、实践与探索的`数学活动过程,解决一些有关稍复杂的面积计算问题,拓展对相关面积计算问题的新认识、新经验,促进其创新意识和实践能力的发展。
[教学重点]。
2、能够正确、熟练地进行相关计算,提高应用多边形面积计算公式解决实际问题的能力。
3、切实感受“我创造,我快乐”
[教学难点]。
[教学准备]图形(五种基本图形、组合图形)、课件,学生自备完全一样的梯形、三角形各两个。
[教学过程]。
一、导入谈话。
同学们,我们已经学过了“多边形的面积计算”,今天我们一起梳理一下面积计算方法的推导与应用吧。
(板书课题。)。
二、复习梳理。
(一)引导图形及其面积计算公式。
1、引出所学多边形。
我们会计算哪些平面图形的面积?(根据生答在黑板上贴基本图形:长方形、正方形,平行四边形、三角形、梯形。)。
过渡:还记得它们各自的面积计算公式吗?能用自己喜欢的方法整理一下吗?
2、自主整理。
1)投影出示小组讨论题。
(1)这5种图形的面积分别是怎样计算的?
(2)这些面积计算公式是怎样推导出来的?
小组讨论。借助课前准备的学具,说说推导过程,每人可选自身最喜欢的图形说给小组成员听。
全班交流。同学选择图形说面积公式的推导过程。
2)整理完善知识结构。
谈话:在小学阶段,我们首先学习的是长方形的面积计算公式,这是为什么?
结合同学汇报,指出:正方形、平行四边形、三角形、梯形的面积公式都与长方形的面积公式有联系。
看课件,你发现了什么?使同学进一步认识到由长方形面积计算公式推导出正方形、平行四边形面积计算公式,由平行四边形面积计算公式推导出三角形、梯形面积计算公式。
小结:由此发现,新旧知识之间有着密切的联系,我们在学习新知识时,都是把它转化成旧知识学习的。转化是一种很重要的思想,以后你在学习新知识时就可以运用转化的方法把它转化成学过的知识,再进行研究。
【设计意图】复习课上教师让同学通过摆图形,回忆推导过程,由“在小学阶段,我们首先学习的是长方形面积计算公式,这是为什么?”这一问题展开讨论,推动同学自主地把各种平面图形的面积计算与长方形联系起来。让同学通过操作、观察、分析,发现知识间的内在联系,顺利地形成合理的认知结构。既有效地激发学生的学习兴趣,又使枯燥的复习课变得直观、形象,让学生更乐意学数学。
三、运用公式。
过渡:你能用这些公式解决生活中的问题吗?
(一)、基本应用练习。
1、投影习题1:
谈话:只列出算式,不计算。
投影习题2:计算它的面积?你能想出几种算法?
(交流后,让学生选择自己喜欢的一种做一做,说明要选择合适的方法。)。
3、创新性练习。
谈话:老师有一个高难度的问题,你敢接受挑战吗?
(1)出示卡片,怎样计算它的面积呢?
投影要求:
1、在小组中轮流说说自己的想法。
2、组长画分割线,剪开。
3、合作计算卡片面积(测量时,取整厘米数或者整半厘米数)。
(2)班内交流。
(3)你能用你刚才剪出的图形拼出更漂亮的图案吗?
【设计意图】:通过让孩子自己设计、选择合适的方案计算面积,培养其应用所学知识解决实际问题的能力,同时也培养他们分析、归纳能力。作为期末复习,对练习巩固的起点要求适当提高,从应用有关图形的面积公式,到一题多解,表达不同的分析思路并走向自我设计寻求优化。学生在有效运用知识中层层提升,感觉成功,发展能力。
四、总结。
师:同学们,这一课我们复习了多边形的面积,请各自再谈谈学习体会,可围绕如下的内容交流:
1、我们自己找到了几种图形面积的联系:长方形和正方形如大树的树根,平行四边形如树干,三角形和梯形如树枝与树叶。
2、创新理解,
【设计意图】:通过引导孩子交流总结谈学习的体会,让孩子进一步梳理自己的知识结构,巩固课堂中刚刚建构的认知模型,使之确实感到复习旧知识,也能有新收获。)。
多边形面积教学设计篇二
教学内容:。
五年级第96--97页整理和复习及练习十九。
教学目的:。
1、通过整理和复习,使学生进一步理解和掌握多边形面积计算公式,能正确、灵活地运用公式进行有关计算,解决一些简单的实际问题。
2、通过操作、观察、比较,发展学生的空间观念,建立良好的知识结构,培养学生的创新意识。
3、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。
教学重点:。
整理完善知识结构、灵活解决实际问题。
教学难点:。
教具、学具准备:。
信封、内装用破纸剪制的三种图形,一张写着长8米,宽6米的长方形的纸。
多边形面积教学设计篇三
教学内容:
人教版小学数学教材五年级上册第113页第2题及相关练习。
教学目标:
(一)知识与技能。
复习已学的多边形面积的计算公式。
(二)过程与方法。
利用转化思想,推导出平行四边形、三角形和梯形的面积计算公式,将各种组合图形的面积转化为已学的多边形面积并加以计算。
(三)情感态度和价值观。
加强知识间的联系,培养学生综合运用各种知识解决问题的能力。
目标解析:
本学期所学的平行四边形、三角形和梯形的面积计算公式都可以从长方形的面积计算公式推导而来。理解推导的过程,对加强知识间的内在联系、掌握转化的数学思想方法起着重要的作用。掌握了这些,学生今后即使忘记某个多边形的面积计算公式,也可自行推导得出。在计算组合图形的面积时,可以鼓励学生采用不同的方法进行计算,提高学生解决问题的能力。
教学重点:
利用转化思想掌握多边形面积的计算公式。
教学难点:
采用不同方法计算组合图形的面积,提高综合应用知识解决问题的能力。
教学准备:
教具:课件;
学具:每人准备两个完全相同的三角形、梯形和一个平行四边形。
教学过程:
一、创设情境,引出新课。
李爷爷有一块地,种了三种蔬菜,是哪三种呢?我们一起去看看(课件出示图片)。
教师引导学生发现信息与问题。
信息:种茄子的是一块三角形的地,底长15m,高是32m;种黄瓜的是一块平行四边形的地,底长25m,高是32m;种西红柿的是一块梯形的地,上底是15m,下底是23m,高是32m。
问题:茄子、西红柿和黄瓜各种了多少平方米?这块地共有多少平方米?
【设计意图】通过情境的创设,拉近数学与生活的联系,使学生产生亲切感,产生学习的兴趣。
二、解决问题,复习方法。
1.三角形的面积=底高2。
=15322。
=240(平方米)。
思考:计算三角形的面积时,为什么要除以2呢?
(出示两个完全相同的三角形,请同学拼一拼,明白三角形的面积就是两个完全相同的三角形所拼成的平行四边形面积的一半。)。
2.平行四边形的面积=底高。
=2532。
=800(平方米)。
思考:为什么平行四边形的`面积是底高,而不是底斜边呢?
(沿平行四边形的高减下三角形,就可以拼得一个长方形。长方形的一边是平行四边形的底,长方形的另一边就是平行四边形的高。)。
3.梯形的面积=(上底+下底)高2。
=(15+23)322。
=608(平方米)。
思考:有谁能说一说梯形的面积公式是怎样得来的?
(用两个完全相同的梯形可以拼成一个平行四边形。平行四边形的底就是梯形的上底+下底,平行四边形的高就是梯形的高,梯形的面积是拼成的平行四边形面积的一半。)。
4.你能用不同的方法求出李爷爷菜地的总面积吗?学生独立解决问题再汇报。
方法一:总面积=三角形的面积+平行四边形的面积+梯形的面积。
=240+800+608。
=1648(平方米)。
方法二:三种图形组合成一个梯形,上底是(25+23)米,下底是(15+25+15)米,高是32米。
总面积=[(25+23)+(15+25+15)]322。
=1648(平方米)。
【设计意图】在呈现简单实际问题的情境中,让学生在解决问题的过程中,回顾了多边形面积计算公式的相关知识和推导面积计算公式的方法,既巩固了多边形的面积计算,又发展了学生迁移、转化的方法和思想。带着问题动手操作,使抽象的知识形象化,进一步唤起对旧知的回忆。用不同的方法求菜地的总面积,让学生进一步感受到解决问题的多样化,训练了学生的思维。
三、巩固练习,应用拓展。
1.课件出示教材第116页练习二十五第7题。
(1)学生独立解题。
(2)汇报评价。
2.课件出示教材第116页练习二十五第8题。
(1)学生独立解题。
(2)汇报评价。
指名说清计算过程中的每一步所表示的意义。既可分段列式,也可以综合列式。
3.课件出示教材第116页练习二十五第9题。
(1)学生独立解题,教师巡视,适当指导。
(2)小组交流汇报,教师评价。
4.课件出示教材第116页练习二十五第10题。
(1)题目给出什么条件,要求什么?
(条件:小方格的边长为1cm。要求:组合图形的面积。)。
(2)学生自主尝试解决问题后,小组交流。
(3)学生汇报自己是怎么想的,教师评价。
【设计意图】第7题与第8题属于基础题,通过解决生活中的简单问题巩固平行四边形及梯形面积的计算公式,让学生进一步熟练面积计算公式;第9题的难度有所加大,体现运用不同方式解决问题的思想,充分体现了开放性,既可通过割的方式,也可通过补的方式来计算,方法三难度相对较大,需要教师引导学生找到三角形的高,让学生感受解决问题的多样性;第10题更为灵活开放,学生先确定方法,再找出相应的长度计算,通过学生汇报自己的思考方法,优化认知,形成共识。
四、全课总结。
这堂课你巩固了什么知识?你有什么新的收获?
【设计意图】将有关多边形面积的知识再次进行系统回顾,既加深印象,又将复习中获得的新知表达出来,让同学们共享,使其对知识的认知再次得到提升。
多边形面积教学设计篇四
整理和复习。
1、通过复习,使学生理清各种平面图形面积计算公式之间的关系。
2、使学生能够应用面积计算公式,熟练计算平行四边形、三角形、梯形和组合图形的面积。
3、能灵活运用所学知识解决有关的实际问题。
熟练计算平行四边形、三角形、梯形及组合图形的面积。
平行四边形、三角形、梯形的磁片。
一、创设情境,揭示课题。
1、想一想,本单元我们学习了哪些知识?
揭示课题:今天这节课我们对第五单元的知识进行整理和复习。
2、在小组内说一说,你学会了什么?
二、知识梳理,形成网络。
1、复习多边形面积计算公式。
老师根据学生所说,演示转化过程,形成如教材96页的板书。
(2)从整理图中能看出各种图形之间的关系吗?
学生回答后老师简要小结。
2、练一练:
老师出示下题让学生独立完成后集体核对。
选择条件分别计算下列各图形的面积。
3、师:刚才复习的是基本图形的面积,而由几个基本图形组合而成的图形叫什么?
出示第96页的第2题,让学生自己独立完成。
集体核对时让学生说一说自己的几种方法。
学生可能会想到下面几种方法。
比较哪种方法比较简便?
三、应用拓展。
1、练习十九第1题。
(1)让学生审题,说一说解题步骤。
(2)独立完成。
(3)小组交流,说一说你的发现。
(4)全班交流。
师小结:几个图形都在两条平行线之间,说明它们的高是相等的,在高相等的条件下,面积不等,说明它们的高都不等。
2、练习十九第4题。
(1)先让学生独立完成第1小题,集体核对。
想一想该如何摆放小树?让学生在草稿本上画一画示意图。
集体订正,展示。
四、小结:说一说今天这节课最大的收获是什么?
五、课堂作业:练习十九第2、3题。
视觉冲击波。
1、纷繁数据的视觉冲击波。
教材97页第4题在仅仅只有12平方厘米的图示中共出现16个数据,可谓是场数据“盛宴”。这些纷繁的数据造成的强力视觉冲击波使学生们个个头昏眼花。虽然大家从图中清晰可辨圣诞树的面积被分成就是求三角形、两个梯形和一个长方形面积,但在实际求组合图形面积过程中他们就是被这些数据“缠绕”,无法“解脱”。全班在规定的时间内仅5人列式计算正确。
冲击波主要干扰到所有图形底的长度。无论是三角形的底,还是梯形的上下底都是学生易混易错之处。看来下次再教时,可利用不同颜色的彩笔勾画不同的图形,这样不仅能增强视觉效果,而且还能起到一定的辅助作用。
2、图案“海洋”的视觉冲击波。
第4题第2小题与练习第3题要求不同。第3题只要求出“大约”结果即可,而第4题却不能简单地用手工纸的面积除以小树的面积,它需要考虑实际的排列情况。教学伊始,我是通过画简单示意图的方式带领学生通过逻辑推理来解决。大家共想到两种剪法:一种是将圣诞树竖着依次排列共可剪5棵;另一种是将圣诞树横着依次排列,每排3棵,可剪2排,所以共可以剪6棵。在此基础再想有所突破就难了。此时,我顺势出示课前按标准尺寸剪好的“圣诞树”与手工纸框架图,请学生上台边展示并验证刚才的发现。通过实际操作许多学生都从第二种剪法找到突破口,“见缝插针”地将树的棵数由6提高到了8。喜悦的心情在同学们心中传播,“还能剪出更多树吗?”的想法一直萦绕在大家的脑中。
学生中有人(魏紫瑞)指出按第3题的解法,这张纸大约可以剪出9棵这样的树。真的能行吗?《教学用书》中指明最多只能剪8棵呀!可这群孩子“明知山有虎,偏向虎山行”。不多久就有一名学生(王菁)最先“插树”成功。(如图)。
通过验证8+8+2+3=21厘米,这种摆放正好充分利用了纸的宽度,摆放成功。班上立即掌声雷动,这自发的掌声不仅仅是对她结果的充分肯定,更是对她敢于挑战权威精神的赞扬。同学们的研究热情此时达到沸点,一发不可收拾。9棵可行,那么10棵还能行吗?这时,我已经是欲罢不能。多名学生上台尝试后发现如果按正规摆法会“缺胳膊少腿”,但他们尝试将树斜着放在空隙中时再次成功。这次我无法通过计算来验证是否合理了。
欣赏着图案“海洋”带来的视觉冲击,使我情不自禁地回味起同学们的精彩发现,我眼仍旧浮现出他们一张张成功后的笑脸,我深深地被这虽然色彩单调却凝聚着学生智慧的图案所折服。
多边形面积教学设计篇五
《多边形的面积》是新人教版第六单元内容。这单元教学内容包括四部分:平行四边形的面积,三角形的面积,梯形的面积和组合图形的面积。
教学时我注重让学生经历面积公式的推导过程,让学生亲自经历数、剪、拼、摆的操作活动。在思维训练上注重渗透“转化”思想,引领学生运用“转化”的方法将新研究图形转化为已经会计算面积的图形,并通过对比探究新研究图形与转化后图形间有什么关系,从而得出新研究图形面积计算的方法。对于组合图形面积的计算,我则渗透了两种思维:一是将组合图形分成若干个已会计算面积的单一图形(分割法),这几个单一图形面积总和便是这个组合图形面积;二是根据图形特征将这个组合图形补成已学过的一个单一大图形(添补法),用这个大图形面积减去补充部分的图形面积便是原组合图形面积。
本以为这样教下来,学生掌握很好,等到本单元的综合测试结果一出来,让我大失所望,更感到我班后进生辅导工作的严峻与艰辛,也感觉到中下成绩学生学得很吃力。一是计算单一图形面积,有个别后进生能写对图形面积计算公式而不会将数据代入公式计算,如果图形是侧放的则无法找到相应的.底和高。而组合图形也就更让他们感到困难了,即使能将图形分成几个单一图形了,他们也无法正确找到相应的数据计算对单一图形面积。二是部分学生计算失误严重。三是单位的改写要么没有,要么出错。
以上这些原因让我不知所措,可见我在平时教学中对中下成绩学生关注得不够,以至中下成绩学生知识出现脱节。针对自己的不足以及学生知识的缺陷,今后在课堂教学中要注意多关注中下成绩学生学习情况,课后多采取措施辅导他们的学习,要帮助他们把最基础的知识补回来,然后再逐渐提高。
多边形面积教学设计篇六
从这个单元的教学中,发现了很多值得反思的问题,有待于今后改进。
(一)多机械记忆,缺灵动思考。
在推导平行四边形、梯形和三角形的面积公式时,学生的参与度是很高的。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。不能很清楚的知道平行四边形的底和高与拼成的长方形的长和宽是对应相等的。当一个图形里面出现几条高和底时,有较多的学生不能正确的选择数据进行计算。有些学生甚至把题目中所有的数据都用上了。学生的反应,促使我对课堂教学进行思考,我觉得要从以下三个方面进行改进。首先,要引导学生进入主动学习的状态。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后推测出面积公式等实践活动,理解相关面积公式的来龙去脉;其次,在教学过程中也要让学生明白多边形的面积计算公式要选择对应的底和高,并且可以在教学的过程中适当出一些有关这方面的练习,加深学生对公式的理解。最后,学生能够说出来的,作为老师尽量不要代替学生说出来。我老是担心学生,代替学生给说出来,在以后的教学中需要特别注意了。
(二)面积单位进率严重遗忘。
有关面积单位的进率是在学生三年级时教学的,现在五年级再用到,学生基本都忘了。作业中发现问题后,我在评讲作业时,重新进行了面积进率的推导,以其帮助学生回忆以前的'知识。但是作业中的情况反应,仍有错误存在。因此,在平时的练习中,需要引导学生复习容易遗忘的知识点,达到常温常新的目的,以减少遗忘。
(三)审题不清,甚至不会审题。
批改学生作业时,感受很深的一点是,很多学生都没有仔细审题的习惯。在写作业的时候常常不注意单位。遇到单位名称不统一时,应转化后再计算,结果,很多学生拿起来就做,根本没注意到这个问题。出现这样的情况,我分析原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯。
多边形面积教学设计篇七
1、在系统复习的基础上通过练习加以巩固,使学生掌握多边形面积面积的计算公式,并能准确熟练地加以运用,解决简单的实际问题。
2、培养学生收集信息的能力和灵活运用知识解决生活中的实际问题的能力。
3、灵活、熟练地应用面积计算公式,解决有关实际问题。
3、培养学生良好的合作意识。
一、复习各图形面积的计算公式:
要求学生分别用文字的和字母的规范表达各公式,写在作业本上。
二、练习。
1、第6题填表指名分别说说每题的结果,如果有错,再指名说说应该怎么算。3、2、第7题读题后,强调:这道题要分两步,先算面积,再算题中的问题。指名说说算面积的方法。方法一:20×9-1×9(提醒:减去的也是一个平行四边形,不是减“1”)方法二:(20-1)×9(转化:可以假设那条小路是在边上,那平行四边形的底就是19米了。)比较两种方法的联系,算一算。
3、第8题读题后,估计有的学生不能很好的理解“每个三角形的腰长8米”。可画其中的一个,让学生理解这个腰长,其实也就是直角三角形的底和高分别是8米。
4、第9题,读题后模仿第7题的解题步骤,指名板演。
注意的问题:
(1)算出的面积57平方米是不是就是57千克?应该用怎样的算式表达得才比较规范?
(2)算出需要油漆57千克后,后面怎么写才规范?
5、第10题。读题、看读图。
(1)说说该题钢管的排列特点。说说你联想到了什么图形?(梯形)提醒:横截面指名说说算梯形的几个关键数据:上底(9)、下底(14)和高(6)可以怎么算:(9+14)×6÷2=69(根)。
(2)根据排列特点,如果下面还有钢管,分别是多少?如果最下面一排是16根,怎么算?完成板书:9+10+11+12+13+14+15+16观察该算式,你可以怎么算?方法一:用(头+尾)乘个数除以2的方法方法二:凑十法比较两种方法,哪个更简单?为什么?指出:凑十法是低年级时学得的方法,这题用方法一更简单,它适用于更多的情况。“头”相当于“上底”,“尾”相当于“下底”,“个数”相当于“高”。
(3)联想:如果这堆钢管原来还有很多,最上面是1根,它是什么形状?怎么算?为什么明明像三角形,却不用三角形的面积公式来计算?得出:它其实是一个梯形。
(4)可能会有的学生会和等差数列的方法联系后回答问题。两种思路的对比和联系。
(5)补充:等差数列的有关知识。
三、评价与反思。
学生根据自己的表现能得几颗x,就把几颗x涂上颜色。
三、布置课外作业:
1、在第131页上剪一个三角形和一个梯形。
2、练习11题。
多边形面积教学设计篇八
第24~25页。
1、在系统复习的基础上通过练习加以巩固,使学生掌握多边形面积面积的计算公式,并能准确熟练地加以运用,解决简单的实际问题。
2、培养学生收集信息的能力和灵活运用知识解决生活中的实际问题的能力。
3、灵活、熟练地应用面积计算公式,解决有关实际问题。
3、培养学生良好的合作意识。
一、复习各图形面积的计算公式:
要求学生分别用文字的和字母的规范表达各公式,写在作业本上。
二、练习。
1、第6题填表指名分别说说每题的结果,如果有错,再指名说说应该怎么算。3、2、第7题读题后,强调:这道题要分两步,先算面积,再算题中的问题。指名说说算面积的方法。方法一:20×9-1×9(提醒:减去的也是一个平行四边形,不是减“1”)方法二:(20-1)×9(转化:可以假设那条小路是在边上,那平行四边形的底就是19米了。)比较两种方法的联系,算一算。
3、第8题读题后,估计有的学生不能很好的理解“每个三角形的腰长8米”。可画其中的一个,让学生理解这个腰长,其实也就是直角三角形的底和高分别是8米。
4、第9题,读题后模仿第7题的解题步骤,指名板演。
注意的问题:
(1)算出的面积57平方米是不是就是57千克?应该用怎样的算式表达得才比较规范?
(2)算出需要油漆57千克后,后面怎么写才规范?
5、第10题。读题、看读图。
(1)说说该题钢管的排列特点。说说你联想到了什么图形?(梯形)提醒:横截面指名说说算梯形的几个关键数据:上底(9)、下底(14)和高(6)可以怎么算:(9+14)×6÷2=69(根)。
(2)根据排列特点,如果下面还有钢管,分别是多少?如果最下面一排是16根,怎么算?完成板书:9+10+11+12+13+14+15+16观察该算式,你可以怎么算?方法一:用(头+尾)乘个数除以2的方法方法二:凑十法比较两种方法,哪个更简单?为什么?指出:凑十法是低年级时学得的方法,这题用方法一更简单,它适用于更多的情况。“头”相当于“上底”,“尾”相当于“下底”,“个数”相当于“高”。
(3)联想:如果这堆钢管原来还有很多,最上面是1根,它是什么形状?怎么算?为什么明明像三角形,却不用三角形的面积公式来计算?得出:它其实是一个梯形。
(4)可能会有的学生会和等差数列的方法联系后回答问题。两种思路的对比和联系。
(5)补充:等差数列的有关知识。
三、评价与反思。
学生根据自己的表现能得几颗x,就把几颗x涂上颜色。
三、布置课外作业:
1、在第131页上剪一个三角形和一个梯形。
2、练习11题。
多边形面积教学设计篇九
这次研究课的课型是复习课,对于复习课我们应该怎样上呢,可以参考的课例很少,依照教学以来形成的方法,我认为复习课的`教学过程一般都是先归纳整理、后总结、再通过练习巩固,这样一个过程。怎么能组织学生形成一个新的复习的方式,我在本次研究课中大胆放手让学生以小组为单位,结合自己在小组内进行总结交流,然后全班交流,虽然学生还不能很完整的进行归纳,但给学生渗透一定的教学思想才是我设计的关键。在进行练习时,为了提高学生的学习积极性,我采用小组竞赛的形式进行,效果很好。练习中我还注意关注全班学生,比较简单的题目就请学困生来回答,给他们树立学习的信心。在练习设计上还设计了一些提高题,让优等生也能充分开发他们的思维。
在讲完课后,和老师们的交流中,我意识到自己的备课过程中、课件设计中还存在一些考虑不够周到的地方。例如在进行单位换算时应该让学生讲一讲换算方法,而不应该只填单位。在讲解比较难的题时,如果设计课件进行演示学生就更容易懂了。
在以后的教学中,设计习题时考察的内容应该是课程标准中的内容,应当注重考察学生的数学能力,解决问题的能力和对数学的基本认识。注意关注全体学生,让每个学生都有所收获。
多边形面积教学设计篇十
平行四边形和三角形的面积需要学生操作、在操作中感知面积的推导过程,但学生的操作能力不一,小组合作的能力还没有养成,所以安排的操作环节只对好学生起了作用,中等及以下的学生没有起到效果,还浪费了不少时间,感觉课堂比较散,学生的注意力不能有效的集中,只是开学一周来的最主要的现象,反思这一周就培养学生的合作、交流能力,估计是不适宜的,开学初,接一个新班,可能还是,先明确要求,培养学生坐正认真听讲的习惯,让学生的注意力集中到教师身上,养成眼睛看黑板的习惯,开学初就安排小组合作容易分散学生的注意力,造成课堂比较散的现象。
虽然基本上学生都能掌握计算的公式,但一部分学生对计算公式的推倒不清楚,不知道为什么这么算,所以在计算中会出现问题,反思课堂,在这一环节处理上也感觉不够清楚,学生操作时比较散,导致中下等学生不理解。
教师主观意识太强,觉得课后安排的练习比较简单,也没重视,其实可以在细节上进行教学,如单位名称,好多学生都写的是长度单位,不是面积单位,答语的完整,书写的规范,观察单位等等。
也可适当增减,增加一些思维含量稍高的练习,为作业中的难题目打好基础,埋下伏笔。从而提高课堂效率。也避免了作业中的题目没时间讲。
课堂作业中反映的问题,计算不过关,书写马虎,单位名称不注意,全是平方厘米。没有仔细观察题目。
教师讲的又多了,感觉容量大,就怕时间来不及,就不有自主的教师讲,学生的自主学习意识就单薄了,备课还需加强,哪些地方要让学生先尝试,先讲,要考虑好,不能上课时临场发挥。
思考明天的练习课,简单的题目,加快频率,有所侧重,第7题侧重单位的处理和直角三角形的底和高,第8题侧重是乘还是除,答语的完整。第9题侧重高的位置。复杂的要花时间,三题都要先让学生思考后再交流,教师一定要舍得花时间,不可代替,主观讲授,否则效果不会好。时间控制在25分钟内,思考题适当提醒完成。留出10分钟左右评讲补充习题上的2条题目。
多边形面积教学设计篇十一
1、学生多边形面积公式的推导过程表达不清。课堂上每一个多边形面积公式的推导过程都是比较清晰的,无论是把平行四边形转化成长方形,还是把两个完全相同的三角形(或梯形)拼成平行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程模糊,表达不清。
2、部分学生不会分辨底、高(不能正确画出高),进行组合图形面积计算时候,不能很好利用平行四边形对边相等、不能创造性地通过虚线清晰地把图形进行分解,从而引起计算错误。
3、审题不清,经常不注意单位的异同,面积计算结果经常用长度单位。
多边形面积教学设计篇十二
判断题。
2.等底等高的三角形可拼成一个平行四边形。()。
4.只要知道梯形的两底之和的长度和它的高,就可以求出它的面积。()。
5.两个周长相等的等边三角形,面积必相等。()。
将本文的word文档下载到电脑,方便收藏和打印。
多边形面积教学设计篇十三
1、一个平行四边形的底长8厘米,是高的2倍,它的面积是(),与它等底等高的三角形面积是。
2、一个梯形的上底是16米,下底是24米,高30米,它的面积是()平方米。
3、一堆钢管,最上层有3根,最下层有13根,每相邻两层相差1根,这堆钢管一共有()。
4、一个直角三角形,三条边分别是10厘米、8厘米、6厘米,它的面积是(样的三角形拼成的长方形面积是()。
5、一个三角形和一个平行四边形的底相等,面积也相等,已知三角形的高是32厘米,那么平行四边形的高是()厘米。
6、一个平行四边形的面积是8平方分米,高是2分米,它的底是()。
7、一个近似梯形的花坛,高10米,上下底之和是16米,面积是()。
8、一个三角形的面积是6平方分米,底3分米,高是()。
9、用四根硬纸条钉成一个长方形框架,将它拉成一个平行四边形后,周长(),面积()。
10、三角形的底扩大3倍,高不变,面积会()。
11、0.45公顷=()。
12、两个完全一样的梯形可以拼成一个()形。
13、一个梯形上底与下底的和是15厘米,高是8.8厘米,面积是()。
14、平行四边形的底是2分米5厘米,高是底的1.2倍,它的面积是()平方厘米。
15、梯形的上底增加3厘米,下底减少3厘米,高不变,面积()平方米。
多边形面积教学设计篇十四
本节课是小学数学五年级第5单元82页整理和复习中的内容。这部分教材要求先把本单元学过的知识进行系统的整理,然后再通过混合练习复习巩固各种多边形面积的计算。在授课中结合自己对《新课程标准》以及《心理学》的理解,体现出一些创新理念:不是让学生机械的背诵和默写公式,而是通过情境引入、剪切拼摆、合作学习、创造想象。算法多样等各环节来实现人人学有价值的数学,人人掌握必须的数学,不同的人在数学上得到不同的发展。
教学目标:
1、知识性目标:引导学生回忆、整理多边形面积计算公式的推导过程,能熟练应用公式进行计算,适当渗透事物之间是相互联系的观点。
2.能力目标:通过观察、测量、拼摆等实践活动,培养学生动手操作、分析比较、总结概括以及探究、解决实际问题的能力。
3、情感与价值观目标:将知识学习与生活实际相结合,使学生感受到学习的乐趣,发展学生的创新思维。
说教法、学法。
1、尊重需要、显现主体。
教学中,不是由教师直接给出面积公式的复习内容,让学今被动接受。而是大胆放手,让学生自主回忆己学过的多边形面积公式的推导过程,予以汇报、展示成果。尊重学生的需要,尊重学生的主体地位。通过自主探究图形之间的内在联系,使学生对于转化这一重要数学思想有更深理解,从而进行学法指导。
2.激励创新加强整合。
精心设计练习,重视对学生思维能力的培养,打破求多边形面积一贯方法的定势,力求实现数学教学的开放性、发展性,使学生能动地构建知识体系。
说教学过程。
一、梳理知识结构。
师:试举例我们主要学过哪些多边形?
生:长方形、正方形、平行四边形、三角形、梯形。
师:我们主要研究了它们的什么?(周长和面积)。
师:你在生活中了解到有哪些图形?
生:尖屋顶是三角形,桌面是长方形。
师:下面我们一起来对学过的多边形面积进行整理和复习。
(设计理念:数学是人们在生产、生活中遇到问题进行思考研究而产生的。形象的`多媒体演示,不仅使学生认识到几何图形的由来,也必将激发学生的学习兴趣,并把所学知识应用到生活中去。)。
二、展示、完善知识结构。
回顾公式推导过程。
1、师:这里有许多大家学过的图形卡片,谁能领取一张说说它的面积公式?
(学生随意抽取,能说出面积公式即可,出现问题,指名纠正。)。
生1:我沿着过平行四边形的顶点的高剪开,将它们排成一个长方形。生2:我沿着过平行四边形底边上一点的高剪开,将它们拼成一个长方形。生3:还可以沿着两个顶点的高剪下,两个三角形,将它们排成一个长方形。
生4:其实沿着平行四边形内任意一条高剪开,都可以排成一个长方形。
您现在正在阅读的《多边形的面积》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!《多边形的面积》说课稿3、小组合作完成:回顾讨论三角形、梯形面积公式的推导过程。(教师巡视,个别指导。)。
生1:正方形是特殊的长方形,所以最基本的是长方形。
生2:平行四边形只在推导三角形和梯形而积公式时用到,最基本的图形是长方形。
(设计理念:让学生经历、回顾多边形面积计算公式的推导过程是本节课的一个重要目标。本环节中,学生采用动手实践、合作学习等多样化的学习方式去自主发现多边形面积之间存在的必然联系。)。
三、应用知识结构。
l、选择条件分别计算下列图形的面积。(单位:厘米)(图形略)。
2、计算组合图形面积,有几种方法就用几种方法。课本p96第2题。
(1)(105)(126)2+125。
(2)10(126)2+(6+12)52。
(3)(5+10)(126)2+65。
(4)12102+652。
(5)(5+10)1226(105)2。
(6)1210(6+12)(105)2。
3、左图是教室的一面墙,如果砌这面墙每平方米用砖185块,一共需要用多少块砖?
课本p97第2题。
4、下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?(剪一剪、算一算)。
(设计理念:基础知识与基本技能是学生学习的重点。教师通过练习反馈环节测评,学生对多边形面积计算公式的掌握和理解,训练学生思维的层次性、深入性和发展性。在组合图形面积计算方法的探索中,学生动眼观察、动脑思考、动手操作,把一个组合图形分解成几个已经学习过的基本图形,、达到练习趣味化、综合化。既培养了学生发散思维能力,又使学生在解决问题的能力和策略上得到培养。)。
四、小结。
通过这节课的学习,你有什么收获?
多边形面积教学设计篇十五
《多边形的面积》是五年级的数学的内容!下面是由小编为大家带来的关于《多边形的面积》。
说课稿。
希望能够帮到您!
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
依据以上分析和新课标的要求,确定本节课要达到的教学目标如下:
(一)知识与能力目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
(二)过程与方法目标:培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
(三)情感态度与价值观目标:培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
(四)教学重点、难点:
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:平行四边形面积公式的推导方法—转化与等积变形。
关键点:通过实践——理论——实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
通过平时的学情观察,我发现学生已经掌握了平行四边形的特征和长方形面积的计算方法,并且有些学生对平行四边形的面积内容并不陌生,已经有了一定的认识,但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此,这是学生学习这一内容的重点和难点。同时,学生的认识水平存在着差异性,如何让不同层次的学生都有一定程度的发展和提高,也是教学中要考虑的重点。为突破重难点,关键要遵循小学生认识事物的一般规律,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。我打算为本节课准备的教具(学具)有多媒体。
课件。
自制长方形框架方格纸课件平行四边形纸片剪刀直尺等。
运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与平行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。
自主探究与合作交流是小学数学新课程标准倡导的学生学习数学的重要方式。学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生自主探究与合作交流,通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:
(一)巧设情境,铺垫导入。
(二)合作探索,迁移创造。
(三)层层递进,拓展深化。
(四)总结全课,提高认识。
下面我就分别从这四个方面说一说:
新课开始,我先拿出一个长方形框架,让学生回忆长方形的面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
随后我把长方形框架拉成了平行四边形框架,并让学生比较周长是否发生变化?面积是否发生变化?通过这些问题,促使学生积极动脑猜想,平行四边形的面积和它的什么东西有关系。
为说明面积发生变化,引出数方格求面积的方法。数方格的时候注意提醒学生先数整格、后数半格,并提示数半格的方法。通过数方格,学生很容易知道拉成后的平行四边形的面积比原来长方形的面积要小了。这时我启发学生平行四边形的面积计算和长方形是不一样的,不可能等于相邻两条边的乘积了。那么拉成后的平行四边形的面积为什么会变小呢?平行四边形的面积究竟和什么有关呢?从而引出本节课的课题:平行四边形的面积计算(板书)。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。
由于前面在数格子时已经有同学提到用割补的方法来求面积,所以我顺水推舟,让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,我引导学生有序按照三个步骤——怎么画、怎么剪、怎么拼来说。同时,我及时抛给学生这样一个问题:“拼成的长方形面积变了没有?”引发学生积极开动脑筋思考。之后,请学生展示不同方法。
汇报后,我总结了预设的两种基本方法,并用媒体展示了过程,使学生更清楚地了解等积转化的过程。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底。接着我让学生根据填空同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高,公式用字母表示s=ah,并让学生齐读和书空。
刚才用数方格的方法算出了平行四边形的面积,现在让学生用公式计算并验证。同时,我及时让学生反馈用公式计算要知道什么信息。并让学生比较数方格和公式计算哪种方便。培养学生用心学习观察的情感。
例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?引导学生写完整整个解题过程。
新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的。
教学设计。
我发挥教师的引导作用倡导学生动手操作、合作交流的学习方式进而建构了学生头脑中新的数学模型:转化图形——建立联系——推导公式。整个过程是学生在实践分组讨论中不断完善提炼出来的这样完全把学生置于学习的主体把学习数学知识彻底转化为数学活动培养了学生观察、分析、概括的能力。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
有利于学生加深对公式的理解,举一反三,知道求高和求底的公式。
强化公式中对高的理解,知道高是底边上对应的高。
让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
猜一猜:如果让你设计一个平行四边形的。
黑板报。
栏目,要求面积是24平方分米,那么底和高各是多少?(底和高都是整数)。
发散学生思维,在一定程度上对学生进行几何美的教育。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
小结:这节课你有什么收获?
有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
总之,以上教学程序的设计遵循学生的认知规律,我大胆放手让学生探究、交流,让学生感觉到数学的生动好玩,学生在一次次引导中操作、思考、解决问题,其外部活动逐渐转化为自身内部的智力活动,从而使学生获取了知识,发展了智力,培养了积极的学习情感,三维目标得到了有机的整合。
多边形面积教学设计篇十六
《多边形面积整理和复习》是在学生已经掌握了平行四边、三角形、梯形的面积计算方法的基础上进行教学的。通过整理和复习,使学生加深对公式的记忆,学会灵活运用公式,并在此基础上学习和掌握一些数学思想方法,拓宽知识面,学会与人合作,共同学习提高。五年级学生已经初步掌握复习整理的方法,具备了一定的复习交流能力,所以本节课采取学生课前自由复习,课中交流复习收获、质疑、运用知识、小组合作解决实际问题,课后延伸的形式进行教学。
在本章教学中,迁移类比的思路或思维是我们学习新平面图形求面积的一个基本方向,通过一系列的类比迁移我们依次学习习近平行四边形、三角形、梯形和组合图形的面积,将未知图形的面积转化为已知图形的`面积求解,是学习求图形面积的一种基本编排思路,而推行这种基本的思路,则借助于二种基本的求面积方法,即割补法、拼摆法。所以,在教学上,始终要给学生渗透这种基本的数学思维――由未知转化为已知。实际上渗透一种数学思路要比我们口干舌燥讲多少题都重要,而讲清基本方法则给学生指明了学习的方向。应该说,课堂上每一个多边形面积公式的推导过程都是比较清晰的。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。
多边形面积教学设计篇十七
本节课对多边形面积计算的知识点进行了全面的整理和复习。把长方形,平行四边形,三角形,梯形的面积计算紧密联系起来。着重解决组合图形的面积计算。在整个教学过程中,我始终贯彻了以下几点:
新课改强调“要使学生体会数学与自然及人类社会的密切联系,了解数学的价值,增强应用数学的意识。”在本节课中,我时刻提醒学生注意数学知识与日常生活的联系,激发学生运用数学知识探索和解决实际问题的强烈欲望,既显得亲切自然,也为整理复习的开展创设新的情境。
在课程设计中,充分发挥学生的主动性,创造尽可能多的机会让学生展示自己学习的收获和聪明才智。既可以是独立的讲解,也可以是同伴的合作,或者是互相的提问,答辩,质疑。所以,我安排后进生,交流基础知识的回顾;让中等生进行复习整理提高;到实践与应用时,充分发挥优等生的优势,辨论用多种方法合理解题。整个过程中,始终让学生通过多种形式的交流,来揭示知识之间的联系,认识转化迁移等数学思想。
组合图形面积计算是长方形、正方形,平行四边形,三角形与梯形的面积计算知识的发展,也是日常生活中经常需要解决的问题。在教学过程中,让学生自主解决组合图形面积计算的问题。再让学生动手操作,自主探究如何使用组合图形,转化为己学过的基本图形的过程中,首先让学生把这个图形,分解成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。在这个环节中,学生基本上都能够运用分割法或添补法把组合图形转化为所学过的基本图形。但在展示学生分法时,我忘记了将在巡堂时发现的个别学生,由于找不到相关条件,无法计算图形面积也进行展示和集体讨论,这是不足的地方。学生汇报了不同的分法后,就让他们用自己喜欢的方法进行图形的面积计算,然后让学生展示汇报,从中小结,用哪种分割法或添补法计算这个组合图形的面积更简单。这个环节花的时间比较多,跟前面的环节类似,结果导致后面的时间很紧,因此在今后教学中应多注意教学环节之间的内容设计,把握重点,尽量紧凑,及时发现问题和做出反馈。
当然,课堂上还存在一些不足。例如,对于有些学生表现好,能够正确地进行评价。而对于有些学生的亮点没有及时发现,评价不到位。且课堂纪律的组织,也有些欠缺。这些有待于自己在今后教学中,不断学习和探索。我深知:教师应该是用教材,而不是学教材,应引导学生走出课本,激活他们的创造性思维,使学生向多元化发展,让学生真正学到有价值的数学,获得必需的数学。
【本文地址:http://www.xuefen.com.cn/zuowen/14194154.html】