通过总结,我们可以反思过去,总结经验,为未来的发展提供参考。在总结中,我们应该准确把握重点和难点。一位行业专家总结了自己多年的研究成果和心得,与大家分享。
解比例教学设计篇一
教学目的:
1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。
教具、学具准备:
教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。
教学过程:
一、复习准备。
1、什么是比例?
2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。
时间(时)27。
路程(千米)180630。
二、导入新课。
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三、进行新课。
用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。
时间(时)12345678…。
路程(千米)90180270360450540630720…。
教师:先独立思考后再讨论、交流、回答以下问题。
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还能够从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)。
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)。
数量(米)1234567…。
总价(元)8.216.424.632.841.049.257.4…。
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系能够用式子表示为x/y=k(必须)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四、巩固练习。
指导学生完成练习十六第1~3题。
五、课堂小结。
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师对全课所学的知识进行归纳。
创意作业。
小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。
解比例教学设计篇二
让个别学生说出运算顺序并计算题目的得数。
教师巡回指点,搜集存在问题。
教师黑板出示问题,学生上台改正,并说明理由。
(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。
三、当堂测评。
练习九第1、2、3题:
注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6。
楼楼板到地面的高度实际上只有5层楼的高度。
学生独立完成教师点评,解决疑难。
学生相互得分,评选优胜小组。
四、课堂小结。
这节课有什么收获?说一说。
还有什么不懂的?提出来小组内解决。
设计意图。
1、在课初始,我便从复习整数及小数的'运算顺序入手,
重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发。
现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练。
习加强计算的训练。
2、当堂测评题将学生置于提高之处,联系实际生活解决问。
题,让学生体会到数学知识的广泛性和严谨性。
解比例教学设计篇三
本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
认识正、反比例的意义。
根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
教学内容。
教材第62—63页的例1和试一试,练一练和练习十三的第1—3题。
课型。
新授。
本单元教时数:4本教时为第1教时备课日期月日
教学目标。
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。
3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。
教学重点。
使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点。
根据正比例的意义正确判断两种相关联的量是不是成正比例。
教学准备。
光盘课件。
教学内容。
教师活动。
学生活动。
二次备课。
1、谈话引出例1的表格。
2、这两种量的数据是怎样变化的?
时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。
小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。
3、但是,你能发现什么呢?
如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。
这个比值是什么呢?
谁能用一句话来概括例1中的变化与不变。
4、介绍成正比例的量。
指名说说,表中有哪两种量。
引导学生观察,
指名说一说。
启发学生从“变化”中寻找“不变”。
学生试着回答,教师帮助完成。
学生完整的说说路程和时间成正比例的量。
1、出示教材试一试。
教师指导学生完成。
学试着完成,并交流回答四个问题。
三、概括意义。
1、引导学生观察例1和试一试,它们有什么共同点。
2、概括正比例的意义,揭示课题(板书)。
3、用字母怎样表示成正比例关系的两种量呢?
y:x=k(一定)。
观察,说说自己的发现。
学生完整的说一说例1和试一试成正比例关系。
四、巩固练习。
1、完成练一练。
2、练习十三第1题。
重点让学生说出判断的理由。
3、做练习十三第2题。
4、做练习十三第3题。
引导学生根据计算的结果来判断。完成书上的问题。
重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。
独立判断,交流时说出判断的理由。
学生先各自算一算,交流,说出思考过程。
指名判断,交流时说出思考过程,其它同学进行补充或纠正。
学生理解题意,然后在书上画一画,算一算,填在书上。
五、全课总结。
学习了什么?你有什么收获?
说一说。
板书。
两种相关联的量=k(一定)y和x就成正比例的量。
课后感受。
教学内容。
教材第63页例2,随后的练一练和练习十三的第4、5题。
课型。
新授。
本单元教时数:4本教时为第2教时备课日期月日
教学目标。
1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学重点。
使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
教学难点。
使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学准备。
光盘课件。
教学内容。
教师活动。
学生活动。
二次备课。
1、先出示例1的表格。
谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。
引导学生观察这些点的排布规律,并用直线连起来。
提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)。
(2)图中所描的点在一条直线上吗?
学生描点。
学生按要求操作完成。
指名回答。
如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。
二、巩固练习。
1、练一练。
学生做好后展示学生画的图象,共同评议。
问:你们画出的表示打字时间和打字个数关系的图象有什么特点?
指名回答第(3)个问题。
2、练习十三第4题。
既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。
第二题要求估计,答案出入是允许的。
3、第5题。
先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。
学生独立完成。
指名回答第(2)个问题。
学生相互间说一说。
学生回答,要说明理由。
讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。
三、全课总结。
说说,议论议论。
板书。
例2(图像)。
课后感受。
解比例教学设计篇四
教学目标:
1、理解比例尺的含义,掌握求比例尺的方法,能正确求出一幅图的比例尺。
2、认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。
教学重点:
教学难点:
认识线段比例尺和数值比例尺,并进行互化。
教学准备:
课件、直尺。
教学过程:
一、定向导学(5分)。
1、填空:
1千米=()m=()cm。
60000cm=()m=()km。
千米化成厘米数,把小数点向()移动()位。
厘米化成千米数,把小数点向()移动()位。
2、导入:
脑筋急转弯:一只蚂蚁从北京爬到上海只用了10秒钟,这是为什么?
在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。这就是我们今天要认识的新朋友---比例尺。板书课题。
3、出示学习目标:
(1)理解比例尺的含义,掌握求比例尺的方法,能正确求出一幅图的比例尺。
(2)认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。
二、自主学习(8分)。
我们中华人民共和国富源辽阔,有960万平方千米,怎样才能把她画在小小的图纸上:这幅图就要用1:4500000的缩小比例尺把她画在地图上。幸福路小学的面积也比较大,也要用1:1200的缩小比例尺把她缩小画在平面图中。下面,我们先来自主学习。(出示自主学习题目)。
学习内容:课本53页内容。
学习方法:先独立看书,用笔画出重点,再回答下列问题:(5分钟之后,比一比,看谁能做对检测题!)。
1、(),叫做这幅图的比例尺。
2、():()=比例尺或=比例尺。
3、为了计算方便,一般把比例尺写成前项或后项是()的形式。
4、北京到天津的实际距离是120km,在一副地图上量得两地的图上距离是2.4cm。这副地图的比例尺是多少?(请第4组的b1板演)。
5、一副中国地图的比例尺是1:100000000,这是()比例尺,表示图上1厘米相当于实际的()m或()km。图上距离是实际距离的(),实际距离是图上距离的()倍。
6、一副北京地图的比例尺是:,这是()比例尺,表示图上的1cm相当于实际的()km。
学完之后,让每组的b1回答。
最后再提问:观察对比,数值比例尺和线段比例尺的不同之处?
指名回答:数值比例尺不带单位;线段比有一条1厘米长的线段,并且线段的第一个端点上的.数字是0,第二个端点上有一个带单位的数字。数值比例尺和线段比例尺的形式不同。
三、合作交流(12分)。
在我们的日常生活中,除了用到缩小比例尺,把把实际距离按一定的比缩小画在图纸上,有时,也会根据需要,用到放大比例尺,把实际距离按一定的比扩大,再画在图纸上,比如:在绘制比较精细的零件图时,经常需要把零件的尺寸按一定的比放大,再画在图纸上。再比如七星瓢虫实际长度只有5mm,本图就用8:1的放大比例尺把它画在图纸上。下面,我们来进行合作学习。(出示合作交流)。
1、一个零件的长为3厘米,画在纸上的长为6厘米,这幅图的比例尺是(),它表示:图上的()厘米相当于实际的()厘米,图上距离是实际距离的()。这是把零件()了。
2、比例尺1:10和10:1相同吗?()。
比例尺1:10表示:(),是()比例尺,()项是1。
比例尺10:1表示:(),是()比例尺,()项是1。
按形式分()例如:()。
()例如:()。
按用途分()例如:()。
()例如:()。
四、质疑探究(5分)。
1、一副地图的比例尺是1:300000,你能用线段比例尺表示出来吗?
2、一幅地图的比例尺是,你能用数值比例尺表示出来吗?
五、小结检测(10分)。
(一)小结:
1、这节课你学会了什么知识?
2、关于比例尺你认为需要注意什么?
(1)数值比例尺与一般的尺不同,它是一个比,不应带有计量单位。
(2)求比例尺时,前、后项的长度单位一定要化成同级单位。
(3)为了计算方便,通常把数值比例尺写成前项或后项是1的比。
(二)检测:
一、填空:
1、1:5000000表示()。
2、5:1表示()。
3、0:40km表示()。
4、在比例尺是1:4000000的地图上,图上距离是实际距离的(),实际距离是图上距离的()倍,把这个数值比例尺改成线段比例尺是()。
二、解决问题。
1、一条跑道全长200米,在图纸上的长度是10厘米。这幅图纸的比例尺是多少?
比例尺。
图上距离。
图上距离:实际距离=比例尺或=比例尺。
实际距离。
数值比例尺例如1:10000。
按形式分。
缩小比例尺例如:1:1。
按用途分。
放大比例尺例如:6:1。
解比例教学设计篇五
1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。
2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。
使学生理解比例尺的意义,会求一幅图的比例尺。
本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
教师活动学生活动。
比较引入演示:出示出示一组大小不同的中国地图。
师:通过观察,你发现了什么?什么变了?什么没变?
师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。
学生回答。(可能出现:形状没变、大小变了。)。
认识新知。
1、出示例6。
师:题中要我们写几个比?这两个比分别是哪两个数量的比?
什么是图上距离?
什么是实际距离?
2、认识探索写图上距离与实际距离比的方法。
师:图上距离与实际距离的单位不同,怎样写出它们的比?
(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)。
3、比例尺的意义及求比例尺的方法。
师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。
题中草坪平面图的比例尺是多少?
师:怎样求一幅图的比例尺?
根据学生的回答,相机板书:
图上距离:实际距离=比例尺。
4、进一步理解比例尺的实际意义。
图上距离/实际距离=比例尺。
指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。
5、认识线段比例尺。
比例尺1:1000还可以用下面这样的形式来表示。
0102030米。
师介绍线段比例尺。
问:图上1厘米表示实际多少米?3厘米呢?
指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。
把图上距离与实际距离的单位统一成相同单位,写出比后再化简。
学生总结:图上距离:实际距离=比例尺。
学生在小组里说说,再全班交流。
学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。
学生:图上1厘米的距离表示实际距离10米。
巩固提高1、做“练一练”第1题。
2、做“练一练”第2题。
独立相互说,指名说。先说说每幅图中比例尺的实际意义。
学生各自测量、计算,再交流思考过程。
解比例教学设计篇六
教学目标:
知识与技能:1.结合丰富的实例,认识反比例。2.能根据反比例的意义,判断两个相关联的量是不是反比例。
过程与方法:通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
情感态度价值观:培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。
教学重点:认识反比例,根据反比例意义判断两个相关联的量是否成。
反比例。
教学难点:认识反比例,根据反比例意义判断两个相关联的量是否成。
反比例。
教具准备:电脑课件。
教学过程:
一、复习引入。
1、计算。
2、判断下面各题中的两种量是否成正比例?为什么?
(1)文具盒的单价一定,买文具盒的个数和总价。
(2)一堆货物一定,运走的量和剩下的量。
(3)汽车行驶的速度一定,行驶的路程和时间。
3、说说什么是正比例。
师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?
二、出示学习目标。
1.能根据反比例的意义,判断两个相关联的量是不是反比例。2通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
3培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。
三、指导自学。
师:给你们讲个小故事:
聪明!嘿嘿??
过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!
学习提示:
一独立思考?
1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”
二合作学习。
小组讨论上述的问题。
三看书合作学习。
1、把25页例2、例3的表格补充完整。
4、你知道什么是反比例吗?
四、学生自学。
五、检查自学效果。
让学生说说自学要求中的内容。
师归纳:两种相关联的量,一种量随着另一种量的变化而变化,
在变化过程中两种量的积一定,那么这两种量成反比例。
六、引导更正,指导运用。
你们还找出类似这样关系的'量来吗?”
排队做操,总人数不变,排队的行数和每行的人数是反比例;长方体的体积一定,底面积和高是反比例。
七、当堂训练。
基础练习。
1、填空。
两种_____的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
(4)圆柱体的体积一定,底面积和高。
(5)小林做10道数学题,已做的题和没有做的题。
(6)长方形的长一定,面积和宽。
(7)平行四边形面积一定,底和高。
提高练习。
宽/cm1。
四、小结。
通过这节课的学习,你有什么收获?
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。
相关联,一个量变化,另一个量也随着变化积一定。
xy=k(一定)。
解比例教学设计篇七
使学生理解正比例的意义,会正确判断成正比例的量。
使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。
正确判断两个量是否成正比例的关系。
一、揭示课题。
在教师的此导下,学生会举出一些简单的例子,如:
1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
二、探索新知。
1、教学例1。
(1)、出示小黑板。问:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)、出示表格。
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25立方厘米。
板书:50100150200?......?252468。
教师:体积与高度的比值一定。
(3)、说明正比例的意义。
在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。
学生读一读,说一说你是怎么理解正比例关系的。
要求学生把握三个要素:
第一、两种相关联的量。
第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三、两个量的比值一定。
(1)、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用正的式子表示:
y?k(一定)x。
(2)、想一想:
师:生活中还有哪些成正比例的量?
学生举例说明。如:
长方形的宽一定,面积和长成正比例。
每袋牛奶质量一定,牛奶袋数和总质量成正比例。
衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
解比例教学设计篇八
教学目标:
1、结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量。
2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。
教学重难点:
认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。
教学过程:
一、呈现情境图。
思考、讨论。
我家的房屋平面图。
1、比例尺1:100是什么意思?
图上距离。
2、比例尺=--------------。
实际距离。
3、独立完成p30页第2、3题。
4、p30页第4题,怎样求窗户的图上距离?注意比成相成的单位后再计算。
5、指导完成p30页第5题。
注意求比例尺时,图上距离与实际距离的单位要统一。
p31页第1题,说明清楚两地距离一般假设是直线距离,计算时,注意单位换算。
p31页第2题,自己尝试独立完成。
放手让学生自己研究。
教师对困难的学生加以指导。
试一试。
练一练。
解比例教学设计篇九
教学目标:
1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。
教学重点:
教学难点:
求一幅平面图的比例尺。
比例尺。
(1)9.5厘米:95米=9.5:9500=1:1000。
6厘米:60米=6:6000=1:1000。
(2)19厘米:95米=19:9500=1:500。
12厘米:60米=12:6000=1:500。
图上距离:实际距离=比例尺。
教学过程:
(包括导引新课、依标导学、异步训练、作业设计等)。
一、生活原型再现。
师:(出示孙楠同学的照片)你们认识他吗?他是谁?
生:孙楠。
师:怎么可能呢?照片上的人这么小,怎么会是他呢?
生:是缩小了……。
师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?
生:不像他了,像丑八怪……。
师:那怎样才能像他呢?
生:都要缩小。
师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?
生:不像,要缩小相同的倍数。……。
二、创设情境,以疑激思。
同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。
出示:足球场:长95米,宽60米。学生作图。
三、独立探究,合作交流。
1、通过学生讨论,引出学习要求。
(1)确定图上的长和宽的长度;
(2)画出足球场的平面图;
(3)写上图上的长和宽的长度;
(4)分别写出图上长、宽与实际长、宽的比,并化简。
根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。
2、学生小组学习。
3、学生汇报设计思路。
(根据学生的汇报板书)。
图上距离:实际距离。
(1)9.5厘米:95米=9.5:9500=1:1000。
6厘米:60米=6:6000=1:1000。
(2)19厘米:95米=19:9500=1:500。
12厘米:60米=12:6000=1:500。
4、揭示比例尺的意义。
图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺。
师:1:500的比例尺,说说你是怎样理解的?
生:表示图上距离是实际距离的1/500;
表示实际距离是图上距离的500倍;
图上距离和实际距离的比是1:500;
图上1厘米表示实际距离5米,
介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。
四、加深理解,拓展应用。
(2)辨析:比例尺是一把尺吗?
(3)比例尺一般出现在什么地方?(地图上或平面图上)。
(4)出示山东省主要城市位置图。
师:在这张地图上,你去过什么地方?
生:比例尺。出示比例尺1∶8000000。
生:图上距离。
师:给你一把尺子能解决这个问题吗?
学生尝试解决。
交流:
生1:在这幅地图上,我用尺子量得烟台到泰安的距离是5.5厘米,根据比例尺图上1厘米表示实际距离80千米,5.5×80=440千米。
生2:根据实际距离是图上距离的8000000倍,可以用。
5.5×8000000=44000000厘米=440千米。
生3:根据图上距离是实际距离的1/8000000,也可以用。
生4:老师,也可以用方程来解。
解:设烟台到泰安的距离是x厘米。
1:8000000=5.5:x。
x=44000000。
44000000厘米=440千米。
师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?
生:4.4小时。
师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?
一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”
五、反思体验拓展完善。
1、学生谈自己的收获,总结本节课的内容。
2、你还想知道什么?
自主练习:2、3。
(包括达标情况、教学得失、改进措施等)。
上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。
(1)在学生已有的经验上学习数学。
新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画足球场的平面图,可以说是水到渠成的。
(2)让学生经历了知识的形成过程。
只有体验过,理解才会深刻。让学生在画足球场的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。
(3)让学生密切联系了生活实际。
数学来源与生活,又应用于生活实际。本节课从让学生设计足球场平面图,到让学生计算老师到泰安的实际距离及需要的时间,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。
解比例教学设计篇十
教学目的:
进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。
教学过程:
一、复习。
判断下面两种理成不成比例,成什么比例,为什么?
(1)单价一定,数量和总价。
(2)路程一定,速度和时间。
(3)正方形的边长和它的面积。
(4)工作时间一定,工作效率和工作总量。
二、新授。
1、揭示课题。
2、学习例7。
(1)认识:“千米/时”的读法意义。
(2)出示书中的问题要求学生逐一回答。
(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?
(4)填空:用下面的形式分别表示两个表的内容。
当()一定时,()和()成()比例关系。
还有什么样的依存关系?
(5)教师作评讲并小结。
(6)用图表示例7中的两种量的关系。
指导学生描点、连线。
在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?
用同样的方法观察右表。
3、总结正、反比例的特点(异同点)。
由学生比、说。
三、巩固练习。
1、练一练第1、2题。
2、p49第1题。
四、课堂小结:
正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?
五、作业。
p49第2题(1)(4)(5)(6)(9)。
六、课后作业。
1、p49第2题(2)(3)(7)(8)(10)。
2、收集生活中正、反比例关系的量并分析。
解比例教学设计篇十一
1、教学内容:人教版小学数学第十二册第三单元第三课时的教学(课本35页,例题2、例题3、及做一做。)。
2、教材分析。
《解比例》教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。
3、教学目标:
根据大纲要求和教材的特点,结合六年级学生的实际水平,确定以下教学目标:课时教学目标分三个围度:
(1)、认知:使学生认识解比例的意义,学会应用比例的基本性质解比例。
(2)、能力:使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
(3)、情感:培养学生良好的学习习惯。
4、教学重难点:根据教材的安排特点,和本节课的教学内容确定以下教学重难点1、认识解比例的意义。2、应用比例的基本性质解比例。
5、说教法:
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。
6、说学情、学法:学生是在学习了比、比例和比例的基本性质后学习解比例的',对比例的内项和外项已经认识,为了更好的体现学生是学习的主人,学生主要采用了以练习法、讲解法和自学辅导法等。
课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。
(一)导入新课。
师:同学们想不想去旅游?(想)现在跟老师一起去北京世界公园去看一看,好不好!(课件出示相关图片,并让学生说图片的认识,适当教育)(这样设计主要是引起学生对这节课的注意。)。
(1)同学们请用这四个数写一个比例,(请学生展示作品)。
(2)比例同学们已经写出来了,那么谁来说说什么叫比例?(表扬学生)。
(3)比例的基本性质是什么?(学生齐说)。
2.根据比例的基本性质把上面的比例改写成积相等的式子。(板书)。
(二)教学新课。
1、出示例2。
(1)、提问:这道例题和刚才的复习题有什么不同?你能用比例的基本性质来求出未知项x吗?(自己先想一想,再动笔写一写。)。
(2)、学生汇报解答过程。
(3)、揭示课题例题2就是求比例中的未知项。(板书:求比例里的未知项)从例题2可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例中的未知项,就叫做解比例。(板书课题)。
同学们你会应用比例的基本性质来解比例了吗?(能)。
出示练习题8︰12=x︰45。
学生独立完成,集体订正。
出示例3:(略)。
请同学们用比例的基本性质来解这个比例,求出未知项x,自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。
然后教师指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。
3.出示练习题(略)。
学生独立完成,集体订正。
4.小结方法。提问:你认为根据比例的基本性质要怎样解比例?
练习要求:学生独立完成,指名板演,集体订正。
这堂课学习了什么内容?你是怎样应用比例的基本性质解比例?
说板书设计:根据学生的学习特点,更容易掌握本节课所学知识。我设计以下板书。(略)。
解比例教学设计篇十二
教学目:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
:掌握成正比例量的变化规律及其特征。
:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
一、复习铺垫激情促思。
1、说出下列每组数量之间的关系。
(1)速度时间路程。
(2)单价数量总价。
(3)工作效率工作时间工作总量。
2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充。
二、初步感知探究规律1、出示例1的表格(略)。
说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)。
(2)引导学生观察表中数据,寻找两种量的变化规律。
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?
根据学生的回答,板书关系式:路程/时间=速度(一定)。
(板书:路程和时间成正比例)。
2、教学“试一试”
学生填表后观察表中数据,依次讨论表下的4个问题。
根据学生的讨论发言,作适当的板书。
3、抽象表达正比例的意义。
根据学生的回答,板书:=k(一定)。
揭示板书课题。
先观察思考,再同桌说说。
大组讨论、交流。
学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。
学生根据板书完整地说一说表中路程和时间成什么关系。
学生独立填表。
完整说说铅笔的总价和数量成什么关系。
学生概括。
三、巩固应用深化规律。
1、练一练。
生产零件的数量和时间成正比例吗?为什么?
2、练习十三第1题。
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第2题。
先独立判断,再有条理地说明判断的理由。
4、练习十三第3题。
先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
讨论、交流。
独立完成,集体评讲。
说明判断的理由。
说一说,画一画。
填一填,议一议。
讨论。
四、总结回顾评价反思。
这节课你学会了什么?你有哪些收获?还有哪些疑问?
解比例教学设计篇十三
教学目标:
1使学生理解什么是相关联的量。
3学会判断两个量是否成正比例关系。
教学过程:
一、导入。
师(板书:关联):知道关联是什么意思吗?
生:指事物之间有联系。
生:也可以指事物之间相互影响。
师:对,关联就是指事物之间发生牵连和影响。
师:能举一些生活中相互关联的例子吗?
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)。
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
二、新授。
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
师:从这个表格中。你还知道什么?
生:答对一题得10分,答对两题得20分,答对三题得30分……。
师:表中有哪两个量?它们的关系怎样?
生:答对的题目与最后的成绩,它们是两个相关联的量。
师:你们能够从中发现什么规律?
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
师:还能发现什么呢?
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。
(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)。
师:刚才这位同学在算出比值的时候,你们发现了什么?
生:不管怎样,它们的比值不变。
师:这个比值实际上就是什么呀?(板书:每题的分数)。
师:你能用一个关系式表示吗?
板书关系式:成绩/答对的题目=每题的分数(一定)。
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)。
1表中有()和()两种量。
2路程是怎样随着时间的变化而变化的?
3任意写出三个相对应的路程和时间的比,并算出它们的比值。
4比值实际上表示(),请用式子表示它们的关系。
(学生交流汇报,师板书关系式)。
(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)。
反思:
从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。
以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。
解比例教学设计篇十四
教材第42页例2、例3。
2、会根据比例的性质或比例的意义正确地解比例。
3、培养学生认真书写和计算的习惯。
1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。
2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
教学重点:
解比例。
教学难点:
突破方法:
引导学生小组合作探究、交流,掌握解比例的根据。
教法与学法:
教法:创设问题情境,引导发现。
学法:独立思考,自主探究。
ppt课件。
一、复习准备。
1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)。
3、利用比例的一些知识,还可以帮助我们解决一些实际问题。
出示比例:3:9=():15。
师:这个比例中的两个外项和两个内项分别是多少?
(外项是3和15,一个内项是9,另一个内项未知的。)。
师:你能利用比例的知识求出这个未知的内项吗?
可以根据比例的意义:比值相等的两个比可以组成比例。因为3:9=1/3,想():15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。
师:像这样,求比例中未知的项,叫做解比例。(课件出示)。
今天这节课就利用比例的有关知识解比例。(板书课题)。
二、探索新知。
1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道、你们能帮帮他们吗?那我们先来看看这道题。
2、出示例题,教学例2。学生读题。
师:1:10是谁与谁的比?
教师随学生的回答板书:埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:
10。
师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。)师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)。
师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)。
板书:解:设这座埃菲尔铁塔模型的高度是x米。
x:320=1:10。
师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?
为什么可以写成这样的等式呢?引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的积的等式。
师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)。
师:我们知道这样含有未知数的等式,叫做——方程。同学们会解方程吗?把这个方程解出来。(在全班学生独立解答的同时,抽一个学生在黑板上解答。)。
师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。
那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们。
知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)。
出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是不是能成比例、)或比例的基本性质来检验。
解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设x——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)。
3、巩固例2练习。
(1)出示练习题p44第8题。
(2)学生独立完成,二名学生板演讲解分析。
(3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数x)。
4、这个比例你能解答吗?出示例3:1、5/2、5=6/x。
(1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)。
(3)学生独立练习,求出未知项。
(4)同学间互相交流,发现问题及时解决。
5、指导学生梳理教材的知识点,完成p42“做一做”。
三、巩固练习。
课件出示基本练习和提高练习,学生独立完成,指名板演。
四、本课小结。
这节课主要学习了什么内容?
五、布置作业。
p44第8题、第9题、第10题。
解比例。
例2模型高度:原塔高度=1:10。
未知项(x)320米。
解:设这座模型高x米。
x:320=1:10。
10x=320x1。
x=320÷10。
x=32。
答:这座模型高32米。
解比例教学设计篇十五
使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
提出本课复习题。
基本概念的复习。
什么叫两种相关联的量?
下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?
什么样的两种量成正比例关系?什么样的两种量成反比例关系?
成正比例关系的量与成反比例关系的量有什么异同点?
应用练习。
完成教材97页的“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。
巩固练习。
完成教材99页第6~7题。
全课总结(略)。
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书。
基本概念的复习。
比和比例的意义与性质。
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺。
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)。
练习巩固。
完成教材十九页第1~4题。
全课总结(略)。
解比例教学设计篇十六
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。
教学重点。
使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。
教学难点。
用比例解决生产生活中的问题。
教学过程。
【问题导学】。
畅所欲言:关于比例,你已经知道了什么?赶紧把你的收获和同桌交流一下吧!
1、交流汇报。
2、运用收获的知识解决问题:将2:8080:25:200200:5放在天平的两端,使它保持平衡,并说出理由。
3、将比例式子运用比例的基本性质改写成等积式。
0、5:5=0、2:20、5×2=()×()。
2/5:1/2=3/5:3/42/5×3/4=()×()。
8:25=40:x()×()=()×()。
观察上面的三个式子,有什么不同?
引导学生解第三个方程,追问方程是怎样来的?
揭题,导入新知。
【自主探究】。
1、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)。
那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)。
依据是什么呢?
同学们真聪明,不用老师讲,用以前学过的知识就解决了今天的难题,继续开动你聪明的大脑前行吧!
2、试做:1、25:0、25=x:1、61、5/2、5=x/6。
与大屏幕比较,提出质疑。
怎样知道解是否正确呢?检验。
3、即时练习:32页做一做。
4、比例在生活中的应用示范广泛,你看,老师给大家带来了谁?
学生解决,如果用比例知识来解,怎样解呢?
教师点拨:用比例解的关键是找到关系式。身高:脚长=7:1,将脚长的条件换到这个关系中,就可以列出比例。
规范写法。
【巩固提升】。
1、出示书35页例2、自己解决,小组交换检查。
【课堂小结】:这节课主要学习了什么内容?
解比例教学设计篇十七
尊敬的各位评委:
你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。
1、教学内容:人教版六年级下册p39正比例的意义。
2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。
3、教学重点,难点、关键:
教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。
4、教学目标:
根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。
遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
本节课我安排了六个教学环节。
第一个环节:游戏导入,激发兴趣。
用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
第二环节:引导观察,启发思考。
教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
第三环节:创设情景,观察实验。
用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
第四环节:探究成正比例的量。
学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
第五环节:巩固练习,拓展提高。
第六环节:全课小结。
在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。
本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。
解比例教学设计篇十八
教学内容:
“解比例”是人教版小学六年级的数学课程,位于第十二册课本第二单元第二课时第35—37页的内容,是一节基础知识与技能的新授课。在新课程改革中规定授课时间为45分钟(一个课时)。
一、教材分析和学情分析。
教材分析:
《解比例》教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。
学情分析:
学生先前在五年级上册时学习过简易方程以及本节课第一课时比例的意义和基本性质为本节课的学习奠定基础,同时学习本节课也是为后面比例的应用创造条件。五年级学生要注重引导他们从直观到抽象的思维方式,激发他们求知的欲望,调动学生学习的积极性和主动性。
1、认知:使学生认识解比例的意义,学会应用比例的基本性质解比例。
2、能力:使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
3、情感:培养学生良好的学习习惯。
三、教学重难点。
重点:认识解比例的意义。
难点:应用比例的基本性质解比例。
四、教学方法。
课标指出:有效的'数学学习活动不是单纯的解题训练,不能单纯的依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课我采用启发式教学引导学生发现问题,组织学生小组合作,尝试自己解决问题,并在学生交流时进行自学辅导。
课前准备:多媒体课件。
(一)趣味游戏、复习导入顺口溜:
比例组成有条件,两相等不能变内外乘()要相等,性质应用最广泛。
用比例的基本性质可以用来干什么呢?(出示课题:解比例)生齐读。
【设计意图】:不拘泥于教材,创设学生感兴趣的引入新课,引起学生的共鸣;同时又渗透了比例的基本性质,对知识进行了复习起到了一举两得的作用。
(二)出示学习目标。
2、能利用比例的基本性质解比例。
【设计意图】:有了目标,就有了前进的动力和方向。
下面跟着老师的自学提示开始今天的探索之旅吧。
(三)出示自学导航。
1、什么叫解比例?
2、自学例。
2、你明白为什么列式是x:320=1:10吗?指出这个比例中的内项和外项。
3、10x=320×1是依据什么得来的?这个方程你会解吗?
4、你能总结出解比例的方法吗?
(四)学生自学,师巡视。
1、学生自己先看书,找出自己看不懂的地方,在小组讨论时解决。
2、师巡视碰到小组解决不了的给予指导。
(五)交流汇报。
1、求比例中的未知项叫做解比例。
2、根据比的对应性列出比例。
3、根据比例的基本性质把比例变成方程,然后在解方程。
【设计意图】让学生自己通过自己的自学以及交流,说出自己的发现,全班同学交流可以让他们体会到数学发现的乐趣。
(六)随机检测。
1、来试试吧!解比例。
8︰12=x︰15。
0.8:4=x:8。
2、我变身了,还认识我吗?挑战一下﹗。
解比例。
(七)课堂检测。
1、求比例中的()叫做解比例;解比例的依据是()。
2、在一个比例中,两个内项互为倒数,其中一个外项是4,另一个外项是()。
3、4x=7y,那么y:x=():()火眼金睛判对错。
1、含有未知项的比例也是方程()。
2、在比例里,两个外项的积与两个内项的积的差是0()求未知数。
20:3=50:x。
8x=2.4×6。
侦探柯南之神秘脚印。
一个月黑风高的夜晚,一家珠宝店失窃了。第二天早上,小侦探柯南经过仔细勘察,在现场发现了一枚犯罪嫌疑人留下的脚印,柯南很快判断出了嫌疑人的身高,你们知道他是怎么判断的吗?科学研究表明:人的身高与脚长的比大约是7:1,柯南在案发现场测得嫌疑人脚印长25厘米,你能算出这个嫌疑人的身高吗?(用比例的方法写)。
题型培优岛。
一种药水是把药和水按1:40的比配制成的,现有药240克,能配制药水多少克?(用比例的方法写)。
【设计意图】课堂练习是为了让学生及时掌握知识,形成能力。根据学生的认知特点与认知水平的差异,我设计了具有梯度的层次性练习,通过不同类型、不同层次的练习使不同程度的学生都能得到发展。
(八)作业布置。
1、出示书35页例2.自己解决,小组交换检查。
【设计意图】通过提问来加深对学习内容的表象。数学课程的内容不仅要包括数学的一些现成结果,还要使学生真正的理解和掌握基本的数学知识与技能。为此给同学们布置作业,不仅是检验学生的学习能力还可以检验教师的教学能力。
(九)谈谈你的收获!(进行课堂小结)。
解比例。
例2模型的高度:原塔的高度=1:10。
模型的高度:320=1:10未知项。
解:设这座模型的高度是x米。
x:320=1:1010x=320×1x=320×1/10x=32。
答:这座模型高32米。
七、说课后反思。
本堂课本着“化教为学,以练研讲”的教学模式讲课,走先学后教“导学案”的教学模式。
虽然本课教学中紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。但是由于自身的语言没有激情因而课堂气氛还有不够活跃,以后我会在这个方面努力。
解比例教学设计篇十九
2.能根据正比例的意义判断两种量是不是成正比例.。
3.培养学生的抽象概括能力和分析判断能力.。
使学生理解正比例的意义.。
口答(课件演示:成正比例的量)。
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
(一)导入新课。
(二)教学例1.(课件演示:成正比例的量)。
2.出示下表,并根据上述内容填表.。
解比例教学设计篇二十
1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。
教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。
一、复习准备。
1、什么是比例?
2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。
时间(时)27。
路程(千米)180630。
二、导入新课。
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三、进行新课。
用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。
时间(时)。
路程(千米)。
教师:先独立思考后再讨论、交流、回答以下问题。
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还能够从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)。
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)。
数量(米)1234567…。
总价(元)8.216.424.632.841.049.257.4…。
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系能够用式子表示为x/y=k(必须)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四、巩固练习。
指导学生完成练习十六第1~3题。
五、课堂小结。
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师对全课所学的知识进行归纳。
创意作业。
小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。
【本文地址:http://www.xuefen.com.cn/zuowen/15488277.html】