函数的周期性说课稿(通用14篇)

格式:DOC 上传日期:2023-12-14 06:38:26
函数的周期性说课稿(通用14篇)
时间:2023-12-14 06:38:26     小编:BW笔侠

总结能够帮助我们梳理思路,提炼核心,形成清晰的文字表达。写总结的时候,我们可以结合具体实例,用事实和数据说话,让总结更具说服力。以下是一些优秀的总结范文,供大家参考。

函数的周期性说课稿篇一

教学目标:

1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围.

3、会求值,并体会自变量与值间的对应关系.

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法.

5、通过的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.

教学重点:了解的意义,会求自变量的取值范围及求值.

教学难点:概念的抽象性.

教学过程:

(一)引入新课:

上一节课我们讲了的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的.

生活中有很多实例反映了关系,你能举出一个,并指出式中的自变量与吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.

解:1、y=30n。

y是,n是自变量。

2、,n是,a是自变量.

(二)讲授新课。

刚才所举例子中的,都是利用数学式子即解析式表示的.这种用数学式子表示时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.

例1、求下列中自变量x的取值范围.。

(1)(2)。

(3)(4)。

(5)(6)。

分析:在(1)、(2)中,x取任意实数,与都有意义.

(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.

同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.

同理,第(6)小题也是二次根式,是被开方数,。

解:(1)全体实数。

(2)全体实数。

(3)。

(4)且。

(5)。

(6)。

小结:从上面的例题中可以看出的解析式是整数时,自变量可取全体实数;的解析式是分式时,自变量的取值应使分母不为零;的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使成立的自变量的取值范围.二次根式的问题也与次类似.

但象第(4)小题,有些同学会犯这样的错误,将答案写成或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里与是并且的关系.即2与-1这两个值x都不能取.

函数的周期性说课稿篇二

合作探究2:当函数与的图象之间有什么关系?(在这儿体现"从特殊到一般"、"从具体到抽象"的方法)。

合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。

(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。

问题1:对数函数()是否具有奇偶性,为什么?

问题2:对数函数(),当时,x取何值,y0,x取何值,y,当呢?

问题3:对数式的.值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述。

1.例题。

例1:求下列函数的定义域。

(2)()。

(该题主要考查对数函数的定义域这一限制条件根据函数的解析式求得不等式,解对应的不等式。同时通过本题也可让学生总结求函数的定义域应从哪些方面入手)。

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

(1),。

(2),。

(3),。

(4),,。

(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)。

合作探究4:已知,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想。)。

本题可以从以下几方面加以引导点拨。

1.本题的难点在哪儿?

2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系。

本题也可以从形的角度来思考。

p691,2,3。

由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)。

函数的周期性说课稿篇三

理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.

终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.

一、问题.

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

二、练习.

1.给出下列命题:

(1)小于的角是锐角;

(2)若是第一象限的角,则必为第一象限的角;

(3)第三象限的角必大于第二象限的角;

(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2与角的终边不可能相同;

2.设p点是角终边上一点,且满足则的值是。

4.若则角的终边在象限。

5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是。

6.若是第三象限的角,则-,的终边落在何处?

例1.如图,分别是角的终边.

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在上所有角的集合;

(3)求始边在om位置,终边在on位置的所有角的集合.

例2.

(1)已知角的终边在直线上,求的值;

(2)已知角的终边上有一点a,求的值。

例3.若,则在第象限.

1、若锐角的终边上一点的坐标为,则角的弧度数为.

2、若,又是第二,第三象限角,则的取值范围是.

3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是.

4、已知点p在第三象限,则角终边在第象限.

5、设角的终边过点p,则的值为.

6、已知角的终边上一点p且,求和的值.

1、经过3小时35分钟,分针转过的角的弧度是.时针转过的角的弧度数是.

2、若点p在第一象限,则在内的取值范围是.

3、若点p从(1,0)出发,沿单位圆逆时针方向运动弧长到达q点,则q点坐标为.

4、如果为小于360的正角,且角的7倍数的角的终边与这个角的终边重合,求角的值.

函数的周期性说课稿篇四

今天我说课的内容是人教版八年级上册第十四章一次函数第一课时,本节内容四个课时完成。我设计的是第一课时的教学,主要内容是一次函数概念。学生已经学过了正比列函数之后来学习一次函数。一次函数既为前面学过的正比列函数知识得以概括和升华,也为后面学习函数知识打下了坚实的基础,因此,一次函数的学习起到了承上启下的作用。

1.知识技能目标。

(1)掌握一次函数的概念和解析式的特点;

(2)知道一次函数和正比列函数的关系;

(3)会利用一次函数解决简单的数学问题。

2.过程和方法。

(1)通过登山问题和正比例函数的概念引出一次函数的概念,培养学生的探究能力;

(2)在教学过程中,让学生学会知识迁移、以及类比的思想。

3.情感和态度。

(1)通过“登山问题”的研究,体会建立函数模型思想;

(1)通过本节课的学习,向学生渗透数学和实践生活的紧密联系。

1.一次函数的定义和解析式的特点;

3.一次函数定义的应用以及解决相关的问题。

一次函数和正比列函数的关系以及一次函数的应用。

二、学情分析。

学生已经学过了正比列函数的相关知识,并结合实际的情境认识了正比例函数的意义、图像和性质以及一元一次方程等相关的知识。能利用正比列函数的思想解决简单的实际问题,为学生学习一次函数奠定了基础。

三、学法分析。

用观察、思考、概括、总结、归纳、类比、联想是学法指导的重点。

四、教法分析。

采用“引导------发现式”的教学法。

五、教学过程。

函数的周期性说课稿篇五

各位专家,各位老师,大家好!

今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:

新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:

(一)知识与技能目标。

1,经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。

2,经历函数图象信息的识别与应用过程,发展学生的形象思维能力。

3,更进一步培养学生的识图能力,即从“形”的方面解决问题。

(二)情感与态度目标。

1,进一步形成利用函数的观点认识现实世界的意识和能力。

2,通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。

3,丰富学生数学学习的成功体验。

本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,

难点是富有挑战性的数学史料。

本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的“新意”。

教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。

评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。

为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。

(一)教学准备:1,提前一天了解“麦莎”的有关内容。

(二)教学过程。

全课分为五个教学环节。

1,情景引入学习新知。2分钟。

2,议一议探索新知。8分钟。

3,练一练巩固新知。10分钟。

4,试一试开阔思路。5分钟。

5,读一读培养兴趣。7分钟。

6,练一练巩固新知。8分钟。

7,想一想感悟收获。4分钟。

8,布置作业。1分钟。

具体过程如下:(多媒体课件)。

函数的周期性说课稿篇六

本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。

2、教学目标的确定及依据。

依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1)理解对数函数的概念、掌握对数函数的图象和性质。

(2)培养学生自主学习、综合归纳、数形结合的能力。

(3)培养学生用类比方法探索研究数学问题的素养;

(4)培养学生对待知识的科学态度、勇于探索和创新的精神。

(5)在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键。

重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。

难点:底数a对对数函数的图象和性质的影响;

关键:对数函数与指数函数的`类比教学。

由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用"从特殊到一般"、"从具体到抽象"的方法。

(3)体现"对比联系"、"数形结合"及"分类讨论"的思想方法。

(4)投影仪演示法。

在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索,得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

在认真分析教材、教法、学法的基础上,设计教学过程如下:

在某细胞分裂过程中,细胞个数y是分裂次数x的函数,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。

问题一:这是一个怎样的函数模型类型呢?

设计意图:为了引出对数函数。

设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念。

同样,在前面提到的放射性物质,经过的时间x年与物质剩余量y的关系式为,我们也可以把它改为对数式,,其中x年也可以看作物质剩余量y的函数,()可见这样的问题在现实生活中还是不少的。

设计意图:前面的问题情景的底数为2,而这个问题情景的底数为0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。

但在习惯上,我们用x表示自变量,用y表示函数值。

问题一:你能把以上两个函数表示出来吗?

问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想)。

问题三:在中,a有什么限制条件吗?请结合指数式给以解释。

问题四:你能根据指数函数的定义给出对数函数的定义吗?

问题五:与中的x,y的相同之处是什么?不同之处是什么?

问题六:与中的x,y的相同之处是什么?不同之处是什么?

问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?

(提示学生进行类比学习)。

合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求他们之间的关系。

函数的周期性说课稿篇七

各位老师,大家好!

我是张苗,来自河北师范大学xxx级数信c班。今天我要说课的内容是正弦函数的图像与性质的第一课时的内容,此节内容是人教b版高中数学必修四《基本初等函数二》当中的第一章第三节第一小节的内容。下面我将从教学材料的分析、学生学情的分析、教学方法的选择、教学过程的设计、教学结果的反思五各方面来做教学说明。

在分析教学材料的时候我吧他们分为三个方面来讨论:。

(1)教材的地位及作用。初中的时候我们已经学习了一次函数、二次函数等一些简单的初等函数,今天学习的这个正弦函数是我们高中阶段最后的一类初等函数,它是刻画生活中周期现象问题的典型的函数模型,与教学大纲中的从实际出发相吻合。在初中的时候我们也学习了一些三角形及其诱导公式的知识,这些知识为我们的正弦函数的学习提供了良好的基础。今天我们要正式的学习正弦函数的图像及其性质。为以后学习余弦函数的图像及其性质打下坚实的基础。

(2)教学目标。数学课程标准在总体上把教学目标分解为“知识与技能”、“过程与方法”、“情感态度价值观”三个不可分割、相互交融、相互渗透的维度。接下来我将从这三个角度来说明我的教学目标。:我将会用正弦线画出正弦函数图像、用“五点法”画正弦函数简图作为知识与技能的目标,提升学生的观察能力与作图能力、渗透数形结合与转化划归的数学思想方法、培养学生自主探索和和合作的能力作为我们讲课时的过程与方法,最后通过作图,使学生感受波形曲线的流畅美、对称美。使学生体会事物周期变化的奥秘。

(3)教学的重点与难点。本节课是在教学生如何画正弦函数的图像,所以用五点作图法画函数的图像时本节课的重点。而引入正弦函数的图像时所用的正弦线对于学生来说,有些遗忘。吧正弦线重拾起来,并且将它引入正弦函数图像是本节课的难点。

作为教师,我们面对的是活生生的个体,个体存在着不确定性。所以面对这各种各样的不同层次的学生的时候,我们硬度他们进行全面的分析,并且准确的理解他们。(1)从学生知识层面看:通过初中正弦函数值相关知识的学习,学生具备了一定的知识经验和基础;通过必修一函数图像的学习,对作图也有了一定的认识。(2)从学生能力层面看:学生已有一定的分析、推理、概括能力,以及了解了一些抽象的理论知识,具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还待进一步加强。(3)从学生情感培养方面看:思维较活跃,对具体形象的实例比较感兴趣,具有一定的数学基础及解决问题的能力。但对学习抽象知识具有抵触情绪,缺乏主动性。

本课内容蕴含着数形结合等丰富的数学思想,是培养学生观察能力、概括能力、探究能力和创新意识的重要素材。所以我决定采用启发式教学与情景教学相结合的方式来进行我的教学活动,并使用多媒体辅助。

基于以上的种种,我决定设计以下的教学过程,将教学分成以下几个层次:1,创设情境、提出问题,2,问题驱动、探索新知,3,实战演练、巩固新知,4,总结反思、提高认识,5,任务延后、自主探究。

在创设情境、提出问题中,我通过给同学展示一个生活中见过的例子,让学生观察了解日常生活中的实际问题转化为数学问题,提高学生对数学的学习兴趣。问题驱动、探索新知,在这一方面我通过旧知识来引导学生学习新知识,了解新技能,从中发现问题并学会怎么解决新问题,通过学生的实践来获得新知识使他们印象深刻。并有我讲出本节课的重点“五点作图法”实战演练、巩固新知,学习了新知识后我们得通过实际演练,归纳总结,让学生迅速熟悉“五点作图法”在给与一些变式让同学自己动手去实践。接着总结反思、提高认识,在这部分内容中,我决定让学生自己去总结然后我去补充他们遗漏的那些内容,再次使学生明确教学内容以及教学的重点难点。任务延后、自主探究。在这块设计中就是给学生留一些课后习题,以及对于不同个程度的学生来说,不同难度的思考题,让他们依据自己自身的实际情况自主的增减练习。

本节课操作性较强,学生活动量较大新课从试验演示入手,形成图像的感知后,升级问题,探索正弦曲线的准确做法,形成理性认识,问题设置层层深入,引导学生发现问题,解决问题,并对方法进行归纳总结,体现了新课标以学生为主体,教师为主导的课堂教学理念,用多媒体课件可生动的表现出图像的变化过程,更好的突破难点。

本节课所画图像较多,能迅速准确的画出函数图像对学生来说是一个较高的要求,重在学生动手操作,不要怕学生出错,通过画图可以培养学生的动手能力,模仿能力。开始比较慢,尤其是五点法每个点都要准确的找到,然后画出图像。通过后面知识的学习实践证明,本教学设计科学、高效,教学目标达成度良好。

这位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,应随着学生与教师的灵性发挥随机应变。预设效果如何,最终还有待于课堂教学实践的检验。不足之处希望各位老师给与批评指正,谢谢。

函数的周期性说课稿篇八

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析。

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析。

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析。

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法。

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

六、教学过程。

(一)创设情景,引入新课。

情景1:提供一张表格,把上次运动会得分前10的情况填入表格,我报名次,学生提供分数。

名次(得分)。

情景3:某市一天24小时内的气温变化图:(图略)。

提问(1):这三个例子中都涉及到了几个变化的量?(两个)。

提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)。

提问(3):这样的关系在初中称之为什么?(函数)引出课题。

[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张运动会成绩统计单。是为了创设和学生或者生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。

(二)探索新知,形成概念。

1、引导分析,探求特征。

思考:如何用集合的语言来阐述上述三个问题的共同特征?

[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。

提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)。

[设计意图]引导学生观察,培养观察问题,分析问题的能力。

提问(5):两个集合的元素之间具有怎样的关系?(对应)。

及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。

提问(6):现在你能从集合角度说说这三个问题的共同点吗?

[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。

上述一系列问题,始终在学生知识的“最近发展区”,倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。

3、探求定义,提出注意。

提问(7):你觉得这个定义中应注意哪些问题?

[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。

4、例题剖析,强化概念。

例1、判断下列对应是否为函数:

[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。

例2、(1);(2)y=x-1;(3);[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。

例3、试求下列函数的定义域与值域:

[设计意图]让学体会理解函数的三要素。

5、巩固练习,运用概念。

书本练习p24:1,2,3,4。

6、课堂小结,提升思想。

引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。

七、教学评价。

1、我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破。

2、为使课堂形式更加丰富,也可将某些问题改成判断题。

4。本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景。

函数的周期性说课稿篇九

1说地位:二次函数是在一次函数,反比例函数的基础上,对函数的认识的完善与提高;也是对方程的理解的补充。而本节课的内容,是对二次函数y=ax2+bx+c中系数,a,b,c功能的探究,意在深化学生对二次函数图象及其性质的进一步理解,在每年中考中,此内容都占有一定的分量,不可小视。

2说联系:通过对y=ax2+bx+c中a,b,c功能的探究,进一步巩固前面所学的图象及其性质,为后面学习二次函数的应用作基础,激发学生学习数学的热情。

3说课标:结合前后知识,我把这节课的教学目标定为两点,一是熟练掌握y=ax2+bx+c中系数a,b,c的作用,二是进一步体会函数里数形结合的思想。

4说内容:本节课首先通过学生对前面所学知识的掌握,归纳总结出y=ax2+bx+c中a,b,c不同的取值对其图象位置的影响,然后通过4个例题,从不同角度,刻画出a,b,c的取值对函数图象位置的影响,每种例题都配有1-2个练习,供巩固提高,最后小结。

本节课书上没有独立成节,是我根据多年教学经验,积累沉淀下来的。本节课的例题是我在前几年的中考试题中捡拾出来,有些题目还做过删减,或者改动,最终还剩下4个例题6个配套练习。学习内容基本上按先易后难的原则,螺旋上升,循序渐进。

说教学目标:根据课标要求,结合各地中考试题类型,以及学生认知特点,我把这节课的教学目标定为(1)认知目标:根据a,b,c不同的取值范围,确定抛物线的大致位置,反过来,根据抛物线的大致位置,确定a,b,c的取值范围。(2)通过探究,培养学生数形结合的数学思想,掌握学函数的基本方法。

说重、难点:根据这节课的内容,结合学生特点,我把这节课的教学重点定为:弄清y=ax2+bx+c中a,b,c的取值对函数图象的影响。教学难点定为:体会函数中数形结合的思想。通过图象求取值,根据取值找大致的图象。

1说教法:本节课通过师生互动探究式教学,以课标为依据,渗透新的教学理念,遵循教师为主导,学生为主体的原则,结合九年级学生的求知心理和已有的认知水平开展教学,形成学生自动,生生互助,师生互动。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高,思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

2说学法:就课标明确提出要培养可持续发展的学生,因此教师有组织,有目的,有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方法。培养学生动手,动脑,动口的习惯与能力,使学生真正成为学习的主人。

本节课我设为四个模块,第一块是温故引标,先复习抛物线在不同位置情形下时,它的一般解析式,然后引出这节课的内容,探讨二次函数中a,b,c的功能。第二块是合作交流,归纳总结。分组活动,归纳总结出a,b,c的作用。第三块是例题剖析,巩固提高,第一个例题配套1-2个练习,增强学生的解题能力。第四块是小结,反思。让学生对本节课所学内容有一个清晰的认知。

1说板书设计:根据学生的认知规律,我把这节课的内容设为两大块,第一块归纳总结,第二块分4个例题。中间2个,右边2个,相互衔接,浑然一体。

2说反思:本节课既可以说是上新课,也可以说是一节复习课,因而所教内容,一部分同学都有能力独自完成,还有一部分同学需要老师引导才能完成。设计的内容比较单一,训练的题目能否多一点,力争大容量,快节奏,高效益。

函数的周期性说课稿篇十

我们小组的.观察点是教师是否关注学生,是否根据学生的认知基础引导学生自主构建知识体系。观察维度是教学环节设计如何提高学生的数形结合能力和解决实际问题的能力。总的来说,这节课教学环节时间分配较合理,教师引导及时恰当。教师教学思路清晰,教学重点突出,教师由浅入深、轻松愉悦地完成了教学目标。教师亲切的表情、流畅的语言、课件的精心准备等等方面都为学生的引领提供了一个轻松和谐的学习环境。课堂环节设计,教师仔细引导学生通过图象识图辩图,掌握信息,体会分析自变量和因变量的潜在规律,根据了解到的信息,解决提出的问题,提高了学生的数形结合能力。

(1)在教学过程中,学生的主体地位没有充分展示出来,对于问题的生成,最好是教师引导学生去发现问题,提出问题,给每个学生充分的讲话机会,让他们大胆讲出自己的问题,大胆地参与探索和交流,彼此分享各自的观点和灵感,这样才可以调动学生的自主学习积极性。而不是教师牵着学生走,扼杀了学生的思维。

(2)缺少对学生动手能力的培养。缺少鼓励性评价性语言。通过交流,让学生之间互评,可以充分交流、碰撞,提高学习的主动性,积极性,参与性和创造性,是一种体验式的学习。

(3)小组合作探究再增加一个问题环节效果更好。对于例2的讲解,教师应更加强小组合作的模式,通过小组内探讨发现,找到问题,培养学生数形结合的能力和语言表达能力。

课前整体设计是一体的,但在课堂巩固练习环节时间偏短,可适当在自主探究上再缩短时间,如让学生根据图象口答问题,可直接回答,节省时间。

函数的周期性说课稿篇十一

各位评委、老师们:

大家好!

今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸、

基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:

1.理解一次函数与二元一次方程(组)的关系、

3.通过现实化的实际问题背景,反映祖国科技和经济的发展、

一、创设情境,提出问题。

本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)。

设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)。

二、循序渐进,学习新知。

1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)。

2、下面请看学生如何“研究一次函数与二元一次方程组的关系”、(插入录像4)。

三、剖析例题,巩固新知。

为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)。

四、解决问题,加深认识。

下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)。

五、归纳小结,布置作业。

这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢!

函数的周期性说课稿篇十二

八年级数学“一课两讲”,课题为《正比例函数》。每次听这样的公开课,各上课老师都有自己独特的授课风格,每次都会有不同的收获,听完两节课收获如下:

本节课是在学习了函数的有关概念,和画函数图象后的内容。由学生已经熟识的简单问题列出函数式———得出正比例函数的图象———归纳画图象的方法———归纳图象的性质———性质的应用。整节课的内容刘俏敏老师和吴慧英老师都能清楚地在堂上呈现,符合教材内容的程序,而且在课件上或学案设计上都很有针对性地进行编排教学内容。我更加欣赏刘俏敏老师体现直线动态的环节,它更直接地让学习者明确函数y随自变量x的变化情况。

当然,同样的教材,同样的学生,同样的45分钟,不同的老师,由于教学设计思路不同,课堂教学效果却有不相同。刘老师设计的内容过渡相对较快,对比吴老师的教学方式就有些不同:吴老师会抓住本节的重心内容:多画图———正比例的性质———性质的应用。吴老师在这个环节里把画图的操作环节设计得更为充实,学生只有在真正自己画出的`图象中归纳性质,才能真正对正比例函数性质的理解和运用。

教学中,根据教学内容灵活地运用多媒体这一手段,对于激发学生学习兴趣,突破学习难点,提高课堂教学效率都很有好处的。正如本节课在对此正比例函数的图象时,两位老师的课件均运用了超级画板教学,借助这样的动态的演示,学生头脑中会出现直线变动的规律景象。因为整个演示的过程学生看得清楚,所以教学效果较好。再有,利用多媒体教学,能较好地根据课程的内容合理处理一些问题,来吸引学生的注意力,提升学习的兴趣度,例如吴慧英老师的课前引入,那一段轻松愉悦的音乐,就给本节课做了一个很好的开头,我们也看到全班同学的关注度是很集中的。

每一个学生都可以学习数学,虽然学生智力水平、经验背景和学习习惯存在差异,但我们作为教师每堂课都寄予学生满怀的希望,希望自己所传授的知识令学生接受,理解。所以老师们在备课时就应考虑到学生该如何去学本节课内容。

1、让学生在活动中学习。一节好的数学课,教师应十分关注学生的学习过程,向学生展示知识的发生发展过程。刘俏敏老师和吴慧英老师在本节课中均很实在地考虑到这个问题,并且较顺利合理地设计学生认知的过程,通过画正比例函数的图象,从而获知正比例函数的性质。学生亲身体验和感知有利于获得感性经验,从而实现其认识的内化,促成理解力和判断力的发展,学生正是通过亲手画图获得关于客体的表象,进而上升为理性认识。

2、让学生在合作交流中学习。在数学课堂教学中,如果想要增进教师与学生、学生与学生之间的相互作用,讨论和以小组为单位的学习是最恰当的选择。如果教师希望帮助学生形成更独立的更有责任心的学习方式,小组讨论的策略也是帮助教师实现这一目标的最佳选择之一。在设计教学计划和组织课堂教学中,要经常给学生提供合作与交流的机会,使学生在合作的过程中学习别人的方法和想法,表达自己对问题的看法,从而学会从不同的角度认识数学;养成与别人合作与交流的习惯。我们看到两位老师均能充分利用小组合作交流的方式。特别是吴老师,光明正大地进行小组学习竞比,这种更具课堂挑战胜的合作会令学生的状态处于兴奋和不甘落后的做法,真值得我们借鉴。

听完课后,我们会这样反思,自己平时的课堂与这样有心准备的公开课进行对比,的确有较大的差别。但是,我们要尽可能地组织教学,成为课堂与教学的决策者,学生在教学活动中处于主体地位,我们的数学课堂应该把更多的时间和空间让给学生,教师在课堂中应该是一个“平等”的参与者,鼓励者和友谊的启发者。最后,我们应该向吴慧英老师学习,学习她那满怀激情的笑容,给学生的课堂带来勃勃的生机。这,也正是我们课堂的需求之一吧。

函数的周期性说课稿篇十三

各位专家,各位老师,大家好!

今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:

一,教材分析。

新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:

二,教学目标。

(一)知识与技能目标。

1,经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。

2,经历函数图象信息的识别与应用过程,发展学生的形象思维能力。

3,更进一步培养学生的识图能力,即从“形”的方面解决问题。

(二)情感与态度目标。

1,进一步形成利用函数的观点认识现实世界的意识和能力。

2,通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。

3,丰富学生数学学习的成功体验。

三,教学重点和难点及关键。

本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,

难点是富有挑战性的数学史料。

四,教学理念和教学方式。

本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的“新意”。

教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。

评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。

五,教学媒体和教学技术选用。

为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。

六,教学和活动过程。

(一)教学准备:1,提前一天了解“麦莎”的有关内容。

(二)教学过程。

全课分为五个教学环节。

1,情景引入学习新知。2分钟。

2,议一议探索新知。8分钟。

3,练一练巩固新知。10分钟。

4,试一试开阔思路。5分钟。

5,读一读培养兴趣。7分钟。

6,练一练巩固新知。8分钟。

7,想一想感悟收获。4分钟。

8,布置作业。1分钟。

具体过程如下:(多媒体课件)。

将本文的word文档下载到电脑,方便收藏和打印。

函数的周期性说课稿篇十四

本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。

2、能够进行含有30°、45°、60°角的三角函数值的计算。

3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。

重点:进行含有30°、45°、60°角的三角函数值的计算。

难点:记住30°、45°、60°角的三角函数值。

教师准备。

预先准备教材、教参以及多媒体课件。

学生准备。

教材、同步练习册、作业本、草稿纸、作图工具等。

教学流程设计。

教师指导学生活动。

1.新章节开场白.1.进入学习状态.

2.进行教学.2.配合学习.

3.总结和指导学生练习.3记录相关内容,完成练习.

教学过程设计。

1、从学生原有的认知结构提出问题。

2、师生共同研究形成概念。

3、随堂练习。

4、小结。

5、作业。

板书设计。

3、例题。

本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。

【本文地址:http://www.xuefen.com.cn/zuowen/19370511.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档