通过总结,我们能更加有效地利用已有资源。总结时可以参考一些范文或优秀的案例,以提升自己的写作水平。下面是一些实用的建议,希望可以为大家提供一些思路。
找因数的教学设计篇一
教材分两段:
例1教学公倍数和最小公倍数的认识,例2教学求两个自然数的公倍数和最小公倍数;
例3教学公因数和最大公因数的认识,例4教学求两个自然数的公因数和最大公因数。
安排了实践与综合应用“数字与信息”。
1.借助操作活动,经历概念的形成过程。
以往教学公倍数的概念,通常是直接找出两个自然数的倍数,然后让学生发现有的倍数是两个数公有的,从而揭示公倍数和最小公倍数的概念。公因数和最大公因数的教学同样如此。本单元教材注意以直观的操作活动,让学生经历公倍数和公因数概念的形成过程。
这样安排有两点好处:
一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;
二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。
以公倍数为例,教学时应让学生经历下面几个环节:
第一,准备好必要的图形。要为学生准备长3厘米、宽2厘米的长方形,边长6厘米和8厘米的正方形,也要准备边长为12、18、24厘米等不同的正方形。
第二,经历操作活动。让学生按要求自主操作,发现用长3厘米、宽2厘米的长方形可以正好铺满边长6厘米的正方形,而不能正好铺满边长8厘米的正方形。在发现结果的同时,还应引导学生联系除法算式进行思考。这是对直观操作活动的初步抽象。
第三,把初步发现的结论进行类推,先自己尝试看还能铺满边长是多少的正方形,再在小组里交流。不难发现能正好铺满边长12厘米、18厘米、24厘米等的正方形;在此基础上,还应引导学生思考12、18、24等这些边长和长方形的长、宽有什么关系。
第四,揭示公倍数和最小公倍数的概念,突出概念的内涵是“既是……又是……”即“公有”。
第五,判断8是不是2和3的公倍数,让学生通过反例进一步认识公倍数。理解概念的外延。在此基础上,教材注意借助直观的集合图显示公倍数的意义。公因数的教学同样如此。
为了帮助学生加深对最小公倍数和最大公因数的理解,教材在练习中安排了一些实际问题。如第25页第7题,先引导学生用列表的策略通过列举找到答案,再引导学生联系最小公倍数的知识解决问题。第8题也可用最小公倍数解决问题,但也允许学生用列表的策略列举出答案。第29页第10题让学生先在图中画一画找到答案,也可让学生联系最大公因数的知识解决问题。第11题为学生提供了彩带图,学生可以在图中画一画,也可以直接用最大公因数的知识思考。
2.提倡思考方法多样化,找公倍数和公因数。
课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。
不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:
二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。在教学找公倍数或公因数时,应提倡思考方法多样化。以求8和12的公因数为例,学生可能会分别写出8和12的所有因数,再找一找;也可能先找出8的因数,再从8的因数中找出12的因数,或着先找出12的因数,再从中找出8的因数。
在找出公倍数或公因数之后,还应引导学生用集合图表示出来。要让学生经历填集合图的过程,明确集合图中每一部分的数表示的意义,体会初步的集合思想。
对于两个数有特殊关系时的最小公倍数和最大公因数,教材在练习中安排,引导学生探索简单的规律。由于教材不讲互质数,所以两个互质数的最小公倍数是它们的乘积,最大公因数是1这样的结论不要出现,只要求学生在具体的对象中感受。
为了拓宽学生对求最小公倍数和最大公因数方法的认识,教材在“你知道吗”栏目里介绍了“辗转相除法”求最大公因数和用短除法求最大公因数和最小公倍数,并介绍了两个数的最大公因数和最小公倍数的符号表示。教学时,可以让学生结合阅读进行思考。必要时,教师可以进行简单的讲解。
3.通过调查、交流和尝试,感受数在表达信息中的作用。
教学“数字与信息”这一实践与综合应用时,应注意引导学生通过调查和交流参与活动,感受数字在表达信息中的作用。
课前调查的内容有:
(1)110、112、114、120等特殊电话号码是什么号码;
(2)自己所在学校和家庭居住地的邮政编码;
(3)自己家庭成员的出生日期和身份证号码;
(4)生活中用常见的数字编码表达信息的例子;
(5)自己学籍卡上的学籍号。课后调查的内容有:
(1)去邮局调查有关邮政编码的其他信息;
(2)生活中还有哪些常见的数字编码。教学时,应引导学生充分开展交流活动:比如,为什么有些编号的开头是0?怎样从身份证中看出一个人出生的日期?身份证上的数字编码有哪些用处?等等。
在此基础上,教材在“做一做”中让学生结合实际问题,尝试用数字编码表达信息。比如,为某宾馆的两幢客房大楼的房间编号,为一年级新生编号,还安排了与方位和距离联系的问题,用编码表示家大约在学校的什么位置。
教学时,可以根据需要和时间情况,灵活安排教学时间。
找因数的教学设计篇二
新人教版小学数学五年级下册第13~16页。
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。
自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。
学号牌数字卡片(也可让学生按要求自己准备)。
谈话法、比较法、归纳法。
快乐学习、大胆言问、不怕出错!
课前安排学号:1~40号
课前故事:说明道理:学习最重要的是快乐,要掌握学习的方法。
问:“我们在因数与倍数的学习中,研究的数都是什么数?”(整数)
谁能说说10的因数,你是怎么想的?
今天,我和大家一道来继续共同探讨“因数与倍数”
b、探究找一个数的因数的方法(谈话法、比较法、归纳法)
1、谁来说说18的因数有哪些?
学生预设:有的学生可能会说还有6*3,9*2,18*1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。
d、介绍写一个数因数的方法
可以用一串数字表示;也可以用集合圈的方法表示。
说一说:
18的因数共有几个?
它最小的因数是几?
最大的因数是几?
2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)
a、30的因数有哪些,你是怎么想的?
b、36的因数有几个?你是怎么想的?为什么6*6=36,这里只写一个因数?
d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?
学生总结:
板书:
一个数最小的因数是1;
最大的因数是它本身;
因数的个数是有限的。
轻松一下:
我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)
b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)
因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。
过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。
a、2的倍数有哪些?你是怎么想的?从1开始做手势:1*2=2,2*2=4,2*3=6,一倍一倍地往上递加。
b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好
c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?
(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)
学生总结:
找因数的教学设计篇三
各位老师大家好!我说课的题目是《公因数和最大公因数》。
分析教材
本课是苏教版教材五年级上册第三单元《公倍数和公因数》中的内容。在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。
《课程标准》要求学生“动手操作、自主探索、合作交流”,结合教材的特点,我力求达到下面的教学目标:
1、经历找两个数的最大公因数的过程,理解公因数和最大公因数的意义。探索找公因数的方法,会正确找出两个数的公因数和最大公因数。
2、结合具体实例,渗透集合思想,培养学生有序思考的能力,让学生养成不重复、不遗漏、不重复的思考习惯。
3、培养学生能用自己的语言表述自己的发现,善于发现规律,利用规律解决问题的能力。
依据《课程标准》的要求和教学目标,我确定本课教学重点是理解公因数和最大公因数的意义,教学难点是会求两个数的公因数和最大公因数。
设计理念
在教学中我发挥“教师是学习活动的组织者、引导者与合作者”的作用, 激发学生兴趣、引导学生自己探索。学生才是学习的主体,让学生在玩中学、学中玩,合作交流中学、学后合作交流并根据学生原有的认识基础和认知规律,并结合“以学生的发展为本“的理念, 力求突出以下三点:
1、将教学内容活动化,让学生在做中学。
2、采用小组合作学习,让学生在交往互动中学。
3、充分利用原有的认知经验,在迁移中学。
教学过程
依据教材特点及小学生认知规律和发展水平,整个教学过程安排了四个环节:
一、 活动探究,认识公因数
分为五个步骤:
2、想象延伸:接下来让学生思考还有那些边长是整厘米数的正方形也能铺满大长方形。学生思考后,回答边长是1厘米,2厘米,3厘米的正方形也能铺满大长方形。引导学生说出只要边长“既是”18的因数“又是”12的因数,就能铺满大长方形。从而引出公倍数的概念,再强调因为一个数的因数的个数是有限的,所以两个数的公因数的个数也是有限的(最小是1),让学生在自主参与、发现、归纳的基础上认识并建立公因数的概念的过程。
3、归纳总结:只要正方形的边长既是12的因数又是18的因数,这样的正方形就能铺满大长方形。1、2、3、6既是12的因数又是18的因数,它们就是12和18的公因数。
4、根据 学生的总结我及时板书课题,让学生的形象思维转变成抽象思维。
5、反例教学:让学生说明4是12和18的公因数吗?为什么?
学生通过上面的一正一反教学总结出:公因数要同时是两个数的因数。
为了及时巩固,完成练一练:先让学生在图上画一画,找出公因数和最大因数,填写在书上。
(设计目的:通过具体的操作和交流活动,帮助学生理解公因数,使知识不在枯燥无。让学生到感受成功的喜悦。)
二、自主探索,求最大公因数:
学生在已经掌握公因数概念的基础上,让学生学习怎样找两个数的公因数,学以致用。教学例4时,让学生独立思考,自主探索解决问题的方法,然后小组交流。通过具体的运用,巩固公因数的概念。让学生说说怎样找12和18的公因数,学生可能说三种方法,一是先找12的因数,从12的因数中找18的因数;二是先找18的因数,再从中找出12 的因数,三是分别找出12和18的因数,再找出相同的因数。通过比较三种方法,让学生感受哪种方法比较简捷。在此基础上,揭示最大公因数的含义,并介绍用集合圈的形式来表示12和18的公因数和最大公因数,明确集合图中省略号的作用。
(设计目的:通过学生自主学习,弄清怎样用集合图来表示两个数的公因数。帮助学生更加直观地理解概念,感受数学方法的严谨性。)
三、 综合实践、学以致用
为了体现数学来源与生活,用与生活的理念我设计三个层次的练习:
首先设计关于公因数和最大公因数的概念判断题,进一步让学生对公因数和最大公因数的认识。做到知识和技能融为一体。
接着让学生完成练习五第1题。学生独立完成后交流。
然后分别完成2、3题。小组交流。
(练习的设计是从认识到理解,再到拓展应用,逐层加深,培养学生抽象概括能力和合作意识,教学由课内到课外延伸,增加运用实践机会。)
四、全课小结、过程回顾
这节课我们认识了两个数的公因数和最大公因数,说说你掌握的方法。
学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。
找因数的教学设计篇四
教材分析:
这部分教材首先以例题的形式介绍因数和倍数的概念,然后在例1和例2中分别介绍了求一个数的因数和倍数的方法,引导学生从本质上理解概念,避免死记硬背,向学生渗透从具体到一般的抽象归纳的思想方法。
了解学生:
学生已经学习了四年的数学,有了四年整数知识的基础,本课利用实物图引出乘法算式,然后引出因数和倍数的含义,培养了学生的抽象概括能力。
教学目标:
1、知识技能:(1)理解和掌握因数、倍数的概念,认识它们之间的联系和区别。(2)学会求一个数的因数或倍数的方法,能够熟练地求出一个数的因数或倍数。(3)知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
2、过程方法:经历因数和倍数的认识以及求一个数的因数或倍数的过程,体验类推、列举和归纳总结等学习方法。
3、情感态度:在学习活动中,感受数学知识之间的内在联系,体验发现知识的乐趣。
教学重点:学会求一个数的因数或倍数的方法。
教学难点:理解和掌握因数和倍数的概念。
教学准备:课件、作业纸。
教学过程:
一、创设情境——找朋友
1、唱一唱:你们听过“找朋友”这首歌吗?谁愿意大声的唱给大家听?(一名学生唱,师评价:老师很喜欢你的声音,你敢于表现自己,老师很愿意和你成为好朋友)
2、说一说:谁能具体的说一说“谁是谁的好朋友”?(鼓励:老师希望能听到更多人的声音)
学生完整叙述:“××是李老师的朋友,李老师是××的朋友”。
3、引入新课:同学们说的很好,那能不能说老师是朋友,××是朋友?看来,朋友是相互依存的,一个人不会是朋友。今天我们就来认识数学中的一对朋友“因数和倍数”(板书课题)
二、探究新知
1、提出问题:现在有12名同学参加训练,要排成整齐的队伍,可以怎样排?用一个简单的乘法算式表示出排列的方法。
学生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
课件出示相应的图和算式。
2、揭示概念:以2×6=12为例。
边说边板书:()是12的因数,()是12的因数;
12是()的倍数,12是()的倍数。
学生同桌互相说,指名两名同学说。(评价:这么短的时间内,同学们就能准确、完整的表述它们之间的因倍关系,真了不起。)
突出强调:能不能说12是倍数,2是因数?(学生回答,揭示并板书:相互依存)
3、强化概念:另外两道乘法算式,你也能像这样准确地写出它们之间的关系吗?分组比赛,在作业纸上完成,看哪个组能完全做对。
学生在作业纸上完成,同时课件出示:(指名两名学生在白板上利用普通笔标注答案)
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
找因数的教学设计篇五
教学目标:
1、从操作活动中理解因数的意义,会判断一个数是不是另一个数的因数。
2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。
3、培养学生的合作意识、探索意识以及热爱数学学习的情感。
教学重点:理解因数的意义
教学难点:能熟练地找一个数的因数。
教具准备:多媒体课件
教学过程:
一、引入新课:
1、课件出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?你还能找出12的其他因数吗?
(指名生说一说)
4、你能不能写一个算式来考考同桌?学生写算式。
5、师:今天我们就来学习因数和倍数。(板书课题:因数和倍数)
齐读教材第12的注意。
二、自学预设:
2、怎样找因数?例如18,36的因数是什么?
3、因数有什么特点?一个数的最小因数是多少?有几个因数?(举例说明)
尝试练习
试着完成p13的做一做练习
三、认识因数与倍数,展示交流
(一)找因数:
1、出示例1:18的因数有哪几个?
学生尝试完成汇报:(18的因数有:1,2,3,6,9,18)
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示。课件出示
5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二).我的质疑
1.谁能举一个算式例子,并说说谁是谁的因数?
2.讨论:0×30×100÷30÷10
提问:通过刚才的计算,你有什么发现?
3.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2)这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。
四、反馈检测
1.下面每一组数中,谁是谁得因数?
16和24和2472和820和5
2.下面得说法对吗?说出理由。
(1)48是6的倍数
(2)在13÷4=3……1中,13是4的倍数
(3)因为3×6=18,所以18是倍数,3和6是因数。
3、完成p15第2题
学生自己独立完成,讲评时让学生说一说,是怎么想的?
五、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
板书设计:因数和倍数
18的因数有:1,2,3,6,9,18
一个数的因数::最小的是1,最大的是它本身。
找因数的教学设计篇六
《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。
对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。
一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。
《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:
“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?”
学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。
二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛
三、让学生进行独立思考和自主探索
通过学生的猜测,我把学生的提出的问题进行了整理:
(1)什么是公因数与最大公因数?
(2)怎样找公因数与最大公因数?
(3)为什么是最大公因数而不是最小公因数?
(4)这一部分知识到底有什么作用?
我先让学生独立思考?然后组织交流,最后让学生自学课本
这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。
找因数的教学设计篇七
教学内容:
第45—46页。
教学目标:
1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。2、探索找两个数的公因数的方法,学会正确找出两个数的公因数和最大的公因数。
3、使学生能探索出解决问题的有效方法。
教学重、难点:
探索找两个数的公因数的方法。
教具准备:
实物投影仪等。
教学过程:
一、填一填。
1、呈现找公因数的一般方法:
(1)让学生分别找出12和18的因数,并交流找因数的方法。
引出公因数和最大公因数的概念。
(3)组织学生展开讨论,再引导学生理解“两个数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数”。
(4)小结:找公因数的一般方法是先用想乘法算式的方式分别找出两个数的因数,再找出公有的因数和最大公因数。
2、引导学生讨论其它的方法。
二、练一练。
1、第1、2题,通过这两题的练习,使学生进一步明确找两个数的公因数的一般方法,并对找有特征的数字的最大公因数的特殊方法有所体验。
2、第3题,学生独立完成。
4、让学生用自己的语言来表述自己的发现。
5、第5题,写出下列各分数分子和分母的最大公因数。现自己写一写,然后说一说自己是怎样找公因数的。
三、数学探索。
1、写出1、2、3、4、5、……、20等各数和4的最大公因数。
(1)先让学生填表,找出这些数与4的最大公因数。
(2)再根据表格完成折线统计图。
(3)组织学生观察表格,讨论“你发现了什么规律?”
2、找一找1、2、3、4、5、……、20等各数和10的最大公因数,是否也有规律,与同学说一说你的发现。
四、总结:
谁能说一说找公因数的一般方法是什么?
板书设计:
找最大公因数
12=×()=()×()=()×()
18=()×()=()×()=()×()
12的因数:18的因数:
找因数的教学设计篇八
教学过程:
一、认识倍数和因数
生:1×12
师:猜猜看,他每排摆了几个,摆了几排?
生:12个,摆了一排。
生:三四十二
生齐:2×6
师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。
师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。
师板书:因数和倍数
师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行?
师:谁先来?
生说略
师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?
生:12是12的因数,12是12的倍数。
生:自然数
师:而且谁得除外。
生:0
师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。
3、5、18、20、36
生说略。
二、探索找因数倍数的方法
生1:3、18
师:还有谁?
生2:36
师:3、18、36都是36的因数,只有这3个吗?
生1:1
生2:4
生3:6
师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。
学生填写时师巡视搜集作业。
师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为a、b、c师板书。
a:2、4、13、12、18、36
b:1、2、4、3、6、9、12、18、36
c:1、36、2、18、3、12、4、9、6
师:关于a这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。
生1:都对的
师:有没有道理?看来要找一个人的优点挺困难的。
生2:写全了
生大声说:没有!
生:没有写全,少了3、6、9。
生:36÷4,只写了4,没写9
师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?
生齐:两个两个找。
生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。
师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。
师:第二个同学有没有找全,有没有更好的建议送给他。
生:他应该把4、3调换一下。
师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?
生:他们那样还要头对尾头对尾的,像这样直接就可以写了。
师:有没有听明白,也是同样一对一对出现的。
生:大小没有排,b大小排完后从小到大很舒服。
师:你看你那个舒服吗?
生:舒服
师:正是因为你的质疑,他把方法说了出来。他用了什么?
生:乘法口诀
师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。
生1:找到开始重复就不找了
生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。
师:体会体会1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。
生:
生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。
师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20
生齐:1、2、4、5、10、20
再试一个:15,写在练习纸上。学生汇报
师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。
生:21、300
师:你能把3的倍数全部写下来吗?
生:不能。太多太多了。
师:那怎么办?写不完可以用省略号表示。试试看。
学生练习纸上完成,汇报。
师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的?
生1:3×1、3×2
找因数的教学设计篇九
第45—46页。
1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。2、探索找两个数的公因数的方法,学会正确找出两个数的公因数和最大的公因数。
3、使学生能探索出解决问题的有效方法。
探索找两个数的公因数的方法。
实物投影仪等。
一、填一填。
1、呈现找公因数的一般方法:
(1)让学生分别找出12和18的因数,并交流找因数的方法。
引出公因数和最大公因数的概念。
(3)组织学生展开讨论,再引导学生理解“两个数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数”。
(4)小结:找公因数的一般方法是先用想乘法算式的方式分别找出两个数的因数,再找出公有的因数和最大公因数。
2、引导学生讨论其它的方法。
二、练一练。
1、第1、2题,通过这两题的练习,使学生进一步明确找两个数的公因数的一般方法,并对找有特征的数字的最大公因数的特殊方法有所体验。
2、第3题,学生独立完成。
4、让学生用自己的语言来表述自己的发现。
5、第5题,写出下列各分数分子和分母的最大公因数。现自己写一写,然后说一说自己是怎样找公因数的。
三、数学探索。
1、写出1、2、3、4、5、……、20等各数和4的最大公因数。
(1)先让学生填表,找出这些数与4的最大公因数。
(2)再根据表格完成折线统计图。
(3)组织学生观察表格,讨论“你发现了什么规律?”
2、找一找1、2、3、4、5、……、20等各数和10的最大公因数,是否也有规律,与同学说一说你的发现。
四、总结:
谁能说一说找公因数的一般方法是什么?
板书设计:
找最大公因数
12=()×()=()×()=()×()
18=()×()=()×()=()×()
12的因数:18的因数:
找因数的教学设计篇十
教学内容:青岛版教材小学数学五年级上册88—91页。
教学目标:
1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。
2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。
教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。
教学难点:探索求一个数因数或倍数的方法。
教具准备:多媒体课件、学生练习题
教学过程:
一、谈话导入。
师:同学们看这是什么?
生:小正方形。
师:想不想知道王老师给大家带来了多少个这样的小正方形?
生:想。
师:多少个?
生:12个。
师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?
生:能。
【设计意图】:以学生熟悉情景引入,激发学生的好奇心。
二、教学因数和倍数的意义
师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?
生:好!
学生汇报:
生1:1×12=12
师:他是怎么摆的?
生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。
课件出示摆法。
师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)
生2:2×6=12
师:猜一猜他是在怎么摆的?
生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。
师:这两种情况,我们也算一种。
生3:3×4=12
师:他又是怎么摆的?
生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。
师:还有其他摆法吗?
生:没有了。
师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)
2.教学“因数和倍数”的意义。
师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。
学生汇报:任选一道回答。
生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。
师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。
师:还有一道算式,谁来说一说?
生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。
师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。
师:通过刚才的练习,你有没有发现12的因数一共有哪些?(生边说老师边有序的用课件出示12的所有的因数。)
师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。
3、5、18、20、36
【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。
三、教学寻找因数的方法。
1、找一个数的因数。
师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?
生:有。
师:老师提个要求:
1)、可以独立完成,也可以同桌交流。
2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。
2、探索交流找一个数的因数的方法。
找一名有代表性的作业板书在黑板上。
师:他找对了吗?
生:没有,漏下了一对。
师:为什么会漏掉?仅仅是因为粗心吗?
生:不是,他没有按照一定的顺序找!
师:那么要找到36所有的因数关键是什么?
生:有序。
师生共同边说边有序的把36的所有的因数板书出来。师:还有问题吗?
生:没有了。
生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?
生:再接着找就重复了。
师:那么找到什么时候就不找了?
生:找到重复了,就不在往下找了。
师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。
师:有失误的学生对自己的错误进行调整。
3、巩固练习。
找出下面各数的因数。
4、寻找一个数的因数的特点。
【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。
四、教学寻找倍数的方法。
1、找一个数的倍数。
生:能!
师:试试看,找个小的可以吗?
生:行!
师:找一下3的倍数。30秒时间,把答案写在练习纸上。??
师:有什么问题吗?
生:老师,写不完。
师:为什么写不完?
生:有很多个!
师:那怎么才能全都表示出来呢?
生:可以加省略号。
师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?
师:谁能总结一下你是怎样找到的?
生:从小到大依次乘自然数。
师:你真会思考!
课件出示3的倍数。
2、找5、7的倍数。
师:我们再来练习找一下5的倍数。
生:5的倍数有:5、10、15、20、25??
生:7的倍数有:7、14、21、28、35??
师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?
生:能!
学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。
四、知识拓展
认识“完美数”。
师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。
小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。
【设计意图】丰富学生的知识,陶冶学生的情操。
教学反思:
找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。
找因数的教学设计篇十一
1.教学中帮助学生从已经据有的经验出发,在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考的能力。
2.在1~100的自然数中,能找出某个自然数的所有因数。
体会找一个数的因数的方法
提高有序思考的能力
师:同学们喜欢做拼图的游戏吗?
也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录.
然后,把你拼摆的过程和你的伙伴说说。
1、学生:用12个小正方形自由拼(画)长方形
(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)
参与小组活动,指导学生总结学法.
师:你是怎样拼的,说说好吗?
学生代表一边汇报,一边将所拼的图在黑板上进行演示
注意让学生指图说明。
2、思考:请同学们在合作交流中总结出找一个数的因数的基本方法。
(或者用乘法思路想:哪两个数相乘得12?然后一对一对找出来。)
全班交流
师:我发现同学们真的很聪明,谁愿意把你的想法说给大家听?
(每个小组由一名代表在全班汇报思考的过程,再次体会“想乘法算式”找一个数的因数的方法。)
学生回答,老师同时板演:
(3种,算式一样的可选择其中的一种说出来。)
及时板书:1×12=12 2×6=12 3×4=12
或:12=1×12=2×6=3×4
师:由黑板上整理出的算式可见,12的因数有哪些呢?
(1、12、2、6、3、4)
引导思考:找一个数的因数怎样做到即不重复又不遗漏呢?
(通过以上的拼、画、小组交流,学生已经有所发现。)
学生的答案:
(1)我发现积是12的乘法算式中,它们的因数都是12的因数。
(2)我发现可以利用乘法口诀一对对的找12的因数。
师:谁能按顺序说出来?
(1、2、3、4、6、12)
3、小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。
1、独立完成第8页“试一试”,注意关注学生是否注意有序思考。
(9的因数:1、3、9 15的因数:1、3、5、15)
2、师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们做课本第9页的练一练的第1、2题。
第1题学生独立完成,同桌交流。
(教师巡视,发现问题及时解决。)
第2小题小竞赛:看谁找的快
3、师:同学们已经学会了拼长方形找因数,现在能不能在小方格中画出长方形找因数呢?请做第9页的第3题。
(1×16=16 2×8=16 4×4=16)
(16=1×16=2×8=4×4)
(16的因数:1、2、4、16)
4、下面的数,各有几个因数
1 19 4 32 11
总结:同学们说得很好,我们利用找因数的方法可以解决很多实际问题。
师:这节课你学会了什么呢?用学到的方法我们都可以做些什么?
找因数的教学设计篇十二
江苏省兴化市楚水小学 袁世斌 225700 【教学内容】
在学习本单元之前,学生已经较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。这节课将引领学生从一个新的角度(即倍数和因数的角度)来研究非零自然数的特征及其相互关系,为学生进一步学习数的分类、公倍数和公因数以及分数的约分、通分等奠定基础。
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
理解倍数和因数的意义 【教学难点】
掌握找一个数的倍数和因数的方法 【设计理念】
1、从学生熟悉的生活入手。首先和学生交流生活中人与人的关系,自然过渡到自然数中数与数之间的关系。并由猜老师的年龄,引入倍数的概念以及找一个数倍数的方法。
2、从学生的操作入手。由浅入深,由无序到有序,通过让学生用不同个数的正方形拼成长方形,引入因数的概念,引导学生将数和形有机结合起来,从而有序地找出一个数的所有因数。
一、课前谈话
1、话家常,拉“关系”
是的,在我们生活中人与人之间总会存在着这样那样的关系,而在数字的世界里,数和数之间也会存在各种各样的关系。今天这节课,我们就和大家一起研究两个非零自然数之间的关系。
二、学习倍数的意义
1、猜岁数,引“倍数”
你们为什么异口同声地说我36岁呢?难道只有36是9的倍数吗?
2、按顺序,找倍数
9的倍数除了36还有什么数吗? 能写完吗?为什么?
指出:1倍、2倍往下写,通常只要写出5个,然后用“„„”表示。你能直接写出2的倍数和5的倍数吗? 学生独立书写。
指名回答,板书:2的倍数有2、4、6、8、10、12„„
5的倍数有5、10、15、20、25、30„„ 提问:观察上面的三个例子,你有什么发现?在小组内讨论。
指名汇报,相机出示以下结论:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。
三、学习因数的意义
1、初摆图形,感知“因数” 屏幕出示12个同样大小的正方形
根据3х4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。
同学们一起来读一读,感受一下。
请你从1х12=12;2х6=12这两道算式中任选一题,用上面的话说一说。
2、再摆图形,感受“顺序”
学生独立练习后,组织汇报。
根据学生的回答,投影出示相应的拼法,并相机板书:16÷1=16
16÷2=8 16÷4=4
你能结合这道算式,说说谁是谁的倍数,谁是谁的因数吗?
你能连起来说说16的因数有哪些吗?相机板书:16的因数有:1、16、2、8、4 3是不是16的因数,为什么?5呢?明确因倍关系的依据。
3、数形结合,掌握方法
将你找出的36的因数写在练习纸上。
展示学生的作品。36的因数有:1、36、2、18、3、12、4、9、6.将方法优化:根据数形结合的思想,运用除法算式一对一对地找一个数的因数更为简便,并且能够做到不重复、不遗漏。
4、观察思考,发现规律
引导学生观察12的因数、16的因数和36的因数。
提问:观察上面的三个例子,你又有什么发现?在小组内讨论。
明确:1是所有非零自然数的因数。
既然1是所有非零自然数的因数,那么换句话说,也就是所有非零自然数都是1的?(让学生接上说倍数)
四、综合练习,加深理解
2、你猜、我猜、大家猜
1)、茶杯每只4元,我去超市买了一些茶杯,猜猜我可能用了多少元? 让学生尽可能说出不同答案,师适时追问:可能吗?如有错误,要求学生说出错在哪里,明确用去的钱数是4的倍数。
2)、出示边长3厘米的正方形。
a、长24cm、宽8cm
b、长36cm、宽4cm
根据12的因数的个数比16的因数的个数多,引导学生得出并不是数字越大,因数的个数就越多。然后然学学生找出60的所有因数。
五、总结延伸
找因数的教学设计篇十三
教材分析:
这部分教材首先以例题的形式介绍因数和倍数的概念,然后在例1和例2中分别介绍了求一个数的因数和倍数的方法,引导学生从本质上理解概念,避免死记硬背,向学生渗透从具体到一般的抽象归纳的思想方法。
了解学生:
学生已经学习了四年的数学,有了四年整数知识的基础,本课利用实物图引出乘法算式,然后引出因数和倍数的含义,培养了学生的抽象概括能力。
教学目标:
1、知识技能:(1)理解和掌握因数、倍数的概念,认识它们之间的联系和区别。(2)学会求一个数的因数或倍数的方法,能够熟练地求出一个数的因数或倍数。(3)知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
2、过程方法:经历因数和倍数的认识以及求一个数的因数或倍数的过程,体验类推、列举和归纳总结等学习方法。
3、情感态度:在学习活动中,感受数学知识之间的内在联系,体验发现知识的乐趣。
教学重点:学会求一个数的因数或倍数的方法。
教学难点:理解和掌握因数和倍数的概念。
教学准备:课件、作业纸。
教学过程:
一、创设情境——找朋友
1、唱一唱:你们听过“找朋友”这首歌吗?谁愿意大声的唱给大家听?(一名学生唱,师评价:老师很喜欢你的声音,你敢于表现自己,老师很愿意和你成为好朋友)
2、说一说:谁能具体的说一说“谁是谁的好朋友”?(鼓励:老师希望能听到更多人的声音)
学生完整叙述:“××是 李老师的朋友,李老师是××的朋友”。
3、引入新课:同学们说的很好,那能不能说老师是朋友,××是朋友?看来,朋友是相互依存的,一个人不会是朋友。今天我们就来认识数学中的一对朋友“因数和倍数”(板书课题)
二、探究新知
1、提出问题:现在有12名同学参加训练,要排成整齐的队伍,可以怎样排?用一个简单的乘法算式表示出排列的方法。
学生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
课件出示相应的图和算式。
2、揭示概念:以2×6=12为例。
边说边板书:( )是12的因数,( )是12的因数;
12是( )的倍数,12是( )的倍数。
学生同桌互相说,指名两名同学说。(评价:这么短的时间内,同学们就能准确、完整的表述它们之间的因倍关系,真了不起。)
突出强调:能不能说12是倍数,2是因数?(学生回答,揭示并板书:相互依存)
3、强化概念:另外两道乘法算式,你也能像这样准确地写出它们之间的关系吗?分组比赛,在作业纸上完成,看哪个组能完全做对。
学生在作业纸上完成,同时课件出示:(指名两名学生在白板上利用普通笔标注答案)
找因数的教学设计篇十四
教学目标:
1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。
2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。
教学重点:
求两个数的公因数和最大公因数。
教学难点:
理解求公因数和最大公因数的方法。
教学准备:
小黑板
教学过程:
一、铺垫准备
1.直观演示,作好铺垫。
出示边长6厘米和边长5厘米的两个正方形。
提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?
2.引入新课。
谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。
二、学习新知
1.认识公因数。
(1)出示例9,了解题意。
启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。
交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?
结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3184=4......2)
(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。
【本文地址:http://www.xuefen.com.cn/zuowen/4269092.html】