数学三角形的内角和教案(汇总18篇)

格式:DOC 上传日期:2023-11-08 10:20:46
数学三角形的内角和教案(汇总18篇)
时间:2023-11-08 10:20:46     小编:ZS文王

教案是教学过程的有机组成部分,对于教与学的效果有着重要影响。教案的编写要注意评价学生的综合素质和学科能力的培养。下面是一些经过实践验证的优秀教案分享,希望对大家的教学有所帮助。

数学三角形的内角和教案篇一

1、掌握三角形内角和是180°,并能应用这一规律解决一些实际问题。

2、让学生经历“猜想、动手操作、直观感知、探索、归纳、应用”等知识形成的过程,掌握“转化”的数学思想方法,培养学生动手实践能力,发展学生的空间思维能力。

3、在活动中,让学生体验主动探究数学规律的乐趣,体验数学的价值,激发学生学习数学的热情,同时使学生养成独立思考的好习惯。

让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程。

三角形内角和的探索与验证。

量角器 各种类型的三角形(硬的纸板) 三角板

一、设疑激趣,导入新课

师:今天老师给大家带来了一位朋友(课件)出示三角形,

师:对于三角形你有哪些认识与了解。

生:三角形有锐角三角形、直角三角形、钝角三角形

生:由三条线段围成的平面图形叫三角形。

师:介绍内角、内角和

三角形中每两条边组成的角叫做三角形的内角。

师:三角形有几个内角。

生:三个。

师:这三个角的和,就叫做三角形的内角和。你知道三角形内角和是多少度?

生1:我通过直角三角板知道的

生3:我预习了,三角形内角和就是180度)

师:是不是向他们说的一样,所有的三角形内角和都是180度呢?

二、自主探索,进行验证

师:你打算怎样验证呢?

生1用量角器量出每个角的度数,再加一加看看是不是180度 生2:把三角形撕下来

生3:把三个角顺次画下来也可以

生4:拼一拼的方法

师:好!同学们想出了这么多办法,下面就用你喜欢的方法验证 师:cai多媒体课件展示操作要求:

合作探究:

1、每四人一组,每组至少选两个三角形,用你喜欢的方法验证

2、看那个小组验证的方法新、方法多

师:在巡视,并进行个别操作指导

三、交流探索的方法和结果

孩子们探索的方法可能有三个:

生1:一是用量角器量各个角,然后再算出三角形中三个角的度数和,用这种方法求的结果可能是180度也可能比180度小一些,也可能比180度大一些。

生2:二是用转化法,把三角形中三个角剪下来,拼在一起成为一个平角,由此得出三角形中三个角的和是180度。

生3:三是折一折,把三个角折在一起,折在一起成为一个平角,由此得出三角形中三个角的和是180度。

四、归纳总结,体验成功

师:孩子们,三角形中三个角的度数和到底是多少度呢?

生:180度。

五、拓展应用

1、基础练习

2、等边三角形、等腰三角形、直角三角形

六、课堂小结

谈一谈自己的学习收获。

数学三角形的内角和教案篇二

“三角形内角和”是人教版数学四年级下册的一节探索与发现课,让学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。本节课学生对知识点的掌握还不错,但是,这一节课还有很多不足之处,需要加以改进:

1、教学设计不错,环节紧凑,思路清晰。

2、重视操作过程,时间把握得好。本节课用了大量的时间来让学生做小组实验,从而让他们自己感知三角形内角和是180°,印象深刻。

3、能注意前后照应,解决了前面的疑问。在讲授新课前,设置一个疑问“为什么同一个三角形不能有两个直角?”以此来吸引学生,找出三角形内角和的特性。在掌握了三角形内角和是180°后,再次把问题提出来,让学生解决。

4、板书巧妙,一步步引入课题。先是让学生复习“三角形”的定义,接着简单说明什么是“三角形内角”,最后再讲授三角形三个内角度数的和叫做“三角形内角和”。

5、课堂纪律好,气氛活跃,学生踊跃积极。学生在小组活动时,活跃而有序,上课时能认真听讲,积极举手。同时,实行小组评价更是发挥了学生的主动性。

6、求三角形内角和的方法,一个比一个直观、生动。从量一量、算一算,到剪一剪、折一折,让学生更容易感受到三角形内角和是180°。

7、练习题设计得比较好,特别是判断题,都是学生平时容易出错的题目,在课堂上用比较直观的课件显示出来,让学生的印象深刻。组合题也很有灵活性,先是找出能组成三角形的度数,然后根据度数判断出是什么三角形。

8、能尊重学生的意见,有的小组没有在算一算的时候,没有得出180°的结果,老师能够分析其中的原因。

1、在老师给出“画有2个内角是直角的三角形”的任务时,学生明显是画不出来。但是教师也可以把学生失败的作品展示出来,照应之后的讲解。而不能一带而过。

2、如果量一量的方法,不能让人信服,要在后面打个“?”,等到解决疑问后,再去掉。

3、在进行剪一剪、折一折的活动时,老师应该先用板书上的三角形来示范一次,告诉学生应该怎么做。因为有些学生折不出来。拼的时候,也有出错。

4、把三角形拼成平角后,要用直尺或者是量角器测量一下,看看得出的图形是不是平角,要用严谨的态度对待,不能光用眼睛来判断。

5、老师注意提醒学生读题的时候要规范,要读出度数单位,这很好。但是,在做题练习时,应该请一两个学生在黑板上做,这样也便于教师提醒学生,在书写时,也要注意写上度数单位,强调格式。

数学三角形的内角和教案篇三

《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。针对教材的如此安排,我也设计了如下的开放的课堂预设:

1、要知道我们猜测的是否正确,你有什么办法验证呢?

先独立思考,有想法了在小组里交流。

生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。

学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。

生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。(及时表扬了能主动预习的好习惯。)。

生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。

生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。

生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。

也有同学提出了采用了减下角再拼的方法。

以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。

自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。

数学三角形的内角和教案篇四

人教版义务教育课程标准试验教科书数学四年级下册第67页。

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。

学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

1、使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。

2、使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。

数学三角形的内角和教案篇五

通过猜想、验证,了解三角形的内角和是180度。在学习的.过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

引导学生说出90度、60度、30度。

出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

学生计算后指名回答。

师:三角尺三个角的和是180度。

提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

学生小组活动,教师了解学生情况,个别同学加以辅导。

全班交流:让学生分别说出三个角的度数以及它们的和。

提问:你发现了什么?

:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以。

计算的结果为准。

完成想想做做的题目。

数学三角形的内角和教案篇六

义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。

设计思路

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

多媒体课件、学具。

教学过程

一、激趣引入

(一)认识三角形内角

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究新知

(一)研究特殊三角形的内角和

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中,你发现什么?

生1:这两个三角形的内角和都是180°。

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1.猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

2.操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180°。

生2:175°。

生3:182°。

……

(三)继续探究

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

数学三角形的内角和教案篇七

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

多媒体课件、学具。

一、激趣引入。

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角……。

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)。

(二)设疑,激发学生探究新知的心理。

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)。

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)。

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)。

二、动手操作,探究新知。

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)。

生:90°、60°、30°。(课件演示:由三角板抽象出三角形)。

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中,你发现什么?

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

1.猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)。

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180°。

生2:175°。

生3:182°。

……。

(三)继续探究。

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

数学三角形的内角和教案篇八

通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

三角形的内角和

课前准备

电脑课件、学具卡片

出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

引导学生说出90度、60度、30度。

出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

学生计算后指名回答。

师:三角尺三个角的和是180度。

提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上

任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

学生小组活动,教师了解学生情况,个别同学加以辅导。

全班交流:让学生分别说出三个角的度数以及它们的和。

提问:你发现了什么?

:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以

计算的结果为准。

完成想想做做的题目。

学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。

指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。

通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。

引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。

数学三角形的内角和教案篇九

l教学目标:

知识与技能目标:

1.会用平行线的性质与平角的定义证明三角形内角和等于180o;。

2.能用三角形内角和等于180o进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用.

过程与方法目标:

2.掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力..

情感态度与价值观目标:

1.通过操作、交流、探究、表述、推理等活动,培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆提出疑问,培养学生良好的学习习惯.

l重点:

难点:

l教学流程:

一、情境引入。

内角三兄弟之争。

在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起了……”“为什么?”老二很纳闷.

同学们,你们知道其中的道理吗?

目的:通过对话激发学生的求知欲;让学生通过小组讨论:其中的道理.

数学三角形的内角和教案篇十

1、知识与技能:

(2)运用三角形的内角和知识解决实际问题和拓展性问题。

2、过程与方法:

(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

(2)知道三角形两个角的度数,能求出第三个角的度数。

(3)发展学生动手操作、观察比较和抽象概括的能力。

3、情感态度与价值观:

让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。

教学课件、各种三角形。

1、猜谜语:。

形状似座山,稳定性能坚。三竿首尾连,学问不简单。

(打一图形名称)。

2、猜三角形。

3、引出课题。

师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)。

2、猜一猜。

3、验证。

4、学生汇报。

(1)测量。

(2)剪拼。

a、学生上台演示。

b、请大家三人小组合作,用剪拼的方法验证其它三角形。

c、师演示。

(3)折拼。

师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。

(5)数学小知识。

5、巩固知识。

教师:为什么不是360°?

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

1、看图,求未知角的度数。

2、判断。

3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?

(1)我三边相等。

(2)我是等腰三角形,我的顶角是96°。

(3)我有一个锐角是40°。

4、求四边形、五边形内角和。

师:这节课你有什么收获?

数学三角形的内角和教案篇十一

根据上面三组实验分别证明了锐角三角形、直角三角形、钝角三角形的内角和都等于180度。

四、练一练。

请学生自己画任意的`三角形,并用刚才老师所讲的方法自己来判断一下三角形的内角和。

五、实践活动:

第1题:用纸剪出一个等边三角形。

第2题:将等边三角形两边取中点,并向底作垂线,

第3题:把纸沿着虚线对折。

第4题:观察三个角的内角加起来为多少?

数学三角形的内角和教案篇十二

“三角形的内角和”是人教版小学数学四年级下册第五单元第四节的内容,“三角形的内角和”是三角形的一个重要性质。本课教学内容不算多,学生只需要翻看课本就会知道三角形的内角和是180°,但是陈丽老师并没有让学生这样做。“数学学习的过程实际上是数学活动的过程”。课程标准要求我们“将课堂还给学生,让课堂焕发生命的活力”,要求我们“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。”在教学中,陈老师力求探究,将教学思路拟定为“创设情境,激趣引题——自主合作,探究新知——交流释疑,归纳总结——拓展应用,反思升华”四个环节,努力构建探究型的课堂教学模式。具体体现在以下几个方面:

课一开始,陈老师创设了一个实践操作的活动情境:让学生画一个含有两个直角的三角形。很显然三角形是画不出来的,学生同样也不知道画不出来。简单的活动激活了学生的思维,让他们产生了问题:是不是三角形的角有些什么秘密呢?这样,在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,而且也很自然地揭示了课题。

在教学中,陈老师巧妙运用“猜想、验证”的方式引导学生进行自主学习和探究活动。学生大胆猜想三角形的内角和是180°,让学生对问题形成了统一的认识,使后边的探索和验证活动有了明确的目标。这个时候,陈老师就把课堂大量的时间和空间留给学生,在学生交流探究设想和打算采用的方法后,放手让每个同学自主参与验证活动,在经历观察、操作、分析、推理和想象活动过程中解决问题,同时发展空间观念和论证推理能力。验证的具体过程为:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,结论的形成不缺乏科学性。这个环节的设计更重要的是变“听数学”为“做数学”,让学生在“做中学”。

学生在活动中体验,在交流中消除疑惑,获得新知。这节课生与生、生与师的交流不仅仅停留在知识的层面上,陈老师还引导学生对获得知识所用的方法进行了总结,加强了学法指导。

课程标准提倡练习的.有效性。本节课的练习设计陈老师非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。两个小三角形拼成一个较大的三角形互动练习让学生进一步理解任意三角形的内角和都是180°;后面的练习设计从图形到文字,由一般到特殊;“开心一刻”更是把学生带到无穷的学习乐趣之中。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。

两点建议:

2、学生的猜想结果都是180°,这时老师是否可以反问:你们是怎样知道的?便于学生的学习活动更流畅的进入下一个环节。

总之,我个人认为陈老师对“四步教学法”模式的把握是成功的,学生在这种课堂教学模式下的学习是自主的,是活动的,也是快乐的。

数学三角形的内角和教案篇十三

(一)教材分析:

“三角形的认识”是小学数学苏教版国标教材第八册第三单元第一课时的内容。在此之前,学生已经学习了角,初步认识了三角形,但对三角形的三边关系未曾探索,本课将重点引导学生探究三角形的三边关系,理解任意二边之和大于第三边。教材中,例1让学生在现实情境中找出三角形,并用不同的材料、不同的方法做一个三角形,从而唤起学生的已有经验,进一步抽象出图形,形成三角形的初步概念。例2让学生任意选三根小棒围一个三角形,在操作中体会和发现三角形任意两边之和大于第三边。“想想做做”安排了不同层次、不同形式的练习,让学生及时巩固所学的知识,并感受数学知识的实用价值。学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索规律等方面发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验。

(二)目标定位:

鉴于以上分析,我将本课的教学目标定位为以下三个方面:

1、使学生联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,了解三角形的两边之和大于第三边。

2、使学生在认识三角形的有关特征的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。

3、使学生体会三角形是日常生活中常见的图形,并在学习活动中进一步激发学生学习图形的兴趣和积极性。

根据本课内容特点和四年级学生的心理特性,我把学生分成四人一组,主要采用学生独立思考和合作学习相结合的形式,让学生动手操作,分组讨论、合作交流,结合老师适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,转变学生的学习方式,让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历探索发现的全过程。从而达到培养学生的创新精神和实践能力的`目的。

具体分为以下四部分展开教学。

第一部分:创设情境,引出课题。

多媒体出示李老师上班路线和三个地点,配合及时演示,提问:李老师还可以怎样走?这三个地点和路线形成了一个什么图形?从而揭示课题。

第二部分:实践操作,探索新知。

1、寻找生活中的三角形。

学生联系生活说说见到过的三角形,通过寻找生活中的三角形把数学教学与学生的生活体验相联系,使生活数学化。

(1)让学生利用学具盒里的材料,选择自己感兴趣的制作一个三角形,然后展示学生的作品,要求学生介绍自己的制作过程。交流反馈时,我重点针对学生用到的两种不同的小棒围成的三角形进行反馈,通过提出:后面一种小棒搭成的三角形你是否满意,应该怎样才是一个三角形这个问题来帮助学生理解“围成”,使学生对此印象深刻,为后面的归纳三角形的定义埋下伏笔。

(2)学生们通过观察小组同学展示的形状各异的三角形,获取大量表象认识,在此基础上启发学生画三角形,抽象出三角形图形,从而发现各种形状不同的三角形,都具有相同的特征,随着学生的不断发现,完善并形成了三角形的初步概念。

数学三角形的内角和教案篇十四

核心提示:《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、...

《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

一、创设情境,营造探究氛围。

二、小组合作,自主探究。

三、练习设计,由易到难。

探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。

本着“学贵在思,思源于疑”的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。

将本文的word文档下载到电脑,方便收藏和打印。

数学三角形的内角和教案篇十五

本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

三角板,量角器、点子图、自制的三种三角形纸片等。

看了这2个算式你有什么猜想?

(三角形的三个角加起来等于180度)

1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

老师注意巡视和指导。交流各自加得的结果,说说你的发现。

2、折、拼:学生用自己事先剪好的图形,折一折。

指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

继续用该方法折钝角三角形,得到同样的结果。

直角三角形的折法有不同吗?

通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

4、试一试

三角形中,角1=75,角2=39,角3=( )

算一算,量一量,结果相同吗?

1、算出下面每个三角形中未知角的度数。

在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

3、用一张正方形纸折一折,填一填。

4、说理:一个直角三角形中最多有几个直角?为什么?

一个钝角三角形中最多有几个直角?为什么?

第4、5题

数学三角形的内角和教案篇十六

本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。

下面就具体谈谈微课的教学设计:

1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。

2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。

3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。

重点:让学生亲自验证并总结出三角形的内角和是180度的结论

难点:对不同验证方法的理解和掌握。

交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?

引导学生得出三角尺的三个内角的度数和是180度。

提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)

你有什么办法验证这一结论呢?(动手操作,寻找答案)

方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)

方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。

出示三个三角形:直角三角形、锐角三角形和钝角三角形。

引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。

提问:你有什么办法来验证这一猜想呢?

拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。

方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。

引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。

方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个平角,是180度。

方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个平角,是180度。

方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。

交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?

总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。

1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?

2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?

数学三角形的内角和教案篇十七

各位评委、老师:

我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。

数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的'、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。

三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。

4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

采用“问题情境——建立模型——解释、应用与拓展”的模式展开教学。

采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。

数学三角形的内角和教案篇十八

义务教育课程标准实验教科书(西南师大版)四年级(下)第51~54页主题图、例1、例2及课堂活动第1~3题,练习十第1~5题。

1、通过实验,使学生知道三角形的稳定性及其在生活中的应用

2、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。

3、体会数学与生活的联系,培养学生学习数学的兴趣。

掌握三角形的特性。

三角形的稳定性在实际生活中的应用。

木条制作的长方形和三角形、不条、三角板等

一、游戏导入

1.请两位学生到黑板前学交警指挥交通车时的各种动作姿势。

2.指名两位学生在黑板上画出刚才所观察交警的手与手、手与身躯构成的角。

多媒体出示生活中形状是三角形的物体,让学生观察后,你想探索三角形的哪些问题?

学生自由提问。

板书:意义、特征、特性

二、探究新知

(一)理解三角形的意义

1.学生用小棒任意摆出一个三角形。

教师出示几个具有代表性的图形:

(1)(2)(3)

学生讨论三个图形,是不是都是三角形?为什么?

刚才大家在判断上述三个图形是不是三角形时,都注意到三条线段,围成等这些重要条件(板书:三条段、围成),谁能说说什么是三角形吗?(由三条线段围成的图形叫三角形)

2.练习

(1)举出日常生活中见到的三角形。

(2)判断下列哪些图形是三角形,并说明理由。

(1)(2)(3)(4)(5)

(二)探索三角形的特征

(1)虽然三角形的形状各不相同,但也有相同的地方,谁能说说有哪些地方相同呢?(分组讨论)

(2)小组指定代表说说讨论的结果。

板书:边——3条

角——3个

顶点——3个

(3)让学生用自己的话说说三角形的特征。

学生阅读教材上的内容。

多媒体出示三角形,让学生指出三角形的边、角、顶点。

(4)学生指出三角板上的边、角、顶点。

(三)探索三角形的特性

多媒体出示电线杆、自行车、货柜架等实物图,让学生指出其中的三角形。

提问:为什么这些部位要做成三角形?(分组讨论后,指定学生回答)

这说明三角形具有什么特性?(稳定性)

举出生活中见到哪些物体的哪些部位是做成三角形的。

三、练习。

1.任意画一个三角形。

2.学生在钉子板上围出不同的三角形。

4.说说日常生活中哪些地方应用了三角形的特性?

四、小结:

这节课我们学习了什么?探讨了三角形的哪些问题?你有哪些收获?

板书设计:

三角形的特性

意义:由三条线段围成的图形叫三角形。

特征:边——3条

角——3个

顶点——3个

特性:稳定性。

【本文地址:http://www.xuefen.com.cn/zuowen/9263035.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档