最优找因数的教学设计(案例17篇)

格式:DOC 上传日期:2023-10-27 23:32:09
最优找因数的教学设计(案例17篇)
时间:2023-10-27 23:32:09     小编:灵魂曲

通过总结,我们可以发现问题、找到解决问题的方法,并且在以后的学习和工作中避免犯同样的错误。完美的总结应该贴近实际,突出反思和总结,让读者有所启发和收获。在下面给大家展示一些值得一读的总结范文,希望能够启发大家写出更好的总结。

找因数的教学设计篇一

一、教学目标:

1、 结合具体的生活情景理解公因数和最大公因数的含义,并能正确地求出两个数的公因数和最大公因数。

2、 经历用多样化的方法找公因数的过程,提高解决问题的灵活性。

3、 能根据两个数的不同关系灵活的求两个数的最大公因数。

二、教学重点:掌握求公因数的方法

教学难点:结合实际理解公因数的含义。

四、教学过程:

(一)、复习引入

1、说说30的因数,是怎么求的

(二)、深入理解公因数的含义

可以选边长是多少的正方形呢? 怎么铺? 课件演示

2、还有哪些正方形呢? 我们来动手找一找吧

方老师给每个组准备了两个长18厘米,宽12厘米的长方形代表储藏室,同学们也准备了大小不同的正方形代表瓷砖,你可以用它铺一铺,也可以想其他的办法。

学生动手实践,然后交流

3、反馈 你们找出的结果是什么

边长时1分米,2分米,3分米。6分米的正方形可以刚好铺满.课件演示

边长是4分米的正方形可以密铺吗?为什么?

4、 所以你认为正方形的边长与长方形的长、宽有什么关系?

正方形的边长既是长的因数,又是宽的因数,是长和宽的公因数

5、我们经过寻找发现18和12的公因数有哪些?

6、如果要使铺的块数最少,应选哪一种?它是12和18的最大公因数

7、如果用几何圈表示,你会吗?

12的因数 18的因数

12和18的公因数

(三)、找两个数的公因数和最大公因数

1、现在换成27和18,你能找出它们的公因数和最大公因数吗?请试一试。先独立找,在到小组里进行交流。

2、反馈。先分别罗列出两个数的因数,在找共同的的因数

先列出一个数的因数,在从这个数的因数中找另一个数的因数。

3、你觉得哪种方法比较简便?

4、观察一下,它们的公因数和最大公因数之间有什么关系?

(四)、练习

1、填一填

(1)、8和16的公因数 ,最大公因数是

(2)、15和50的最大公因数是

(3)、5和7的最大公因数

做完后小结和揭题

2、介绍用分解质因数和短除法的方法求最大公因数

3、找出下列各数的公因数和最大公因数

4和8 16和32 1和7 8和9

你有什么发现?

4、做练习十五第4题和第8题

一、教学设计意图

公因数和最大公因数是本册教材的重要教学内容,学生的认知起点是对因数和倍数的认识,并学会找一个数的因数和倍数,为后续的通分和异分母分数加减法做基础。相对来说用罗列的方法来找公因数和最大公因数从学习技能上说比较简单,对学生来说难度不大,所以整节课的难点在于理解公因数和最大公因数的意义,特别是结合实际理解意义,很多学生单纯的找两个数的公因数和最大公因数没有问题,可是结合实际去求,或者根据分解质因数来求学生难度就有一定的难度,很多程度上是属于机械的技能训练,熟能生巧,从学生的思维上看发展是不利的。短除法和用分解质因数求公因数和最大公因数的方法作为介绍来出现。新课程在这节课的处理上与旧教材有很大的不同,其一是意义和求法在一节课完成,其二是降低了难度,教材只要求用罗列的方法来求公因数和最大公因数,分解质因数法作为一种方法进行介绍,如何在降低技能要求的前提下提高学生的思维水平是我在备课是思考的。所以整节课的教学设计我主要体现两点思路。一是从生活实际出发理解公因数和最大公因数的意义,并在此基础上通过实践活动或自己的认识基础探讨求出公因数和最大公因数的方法;二是重点定位在通过不同罗列方法寻找公因数和最大公因数,在此基础上介绍短除法和分解质因数法,培养学生思维的灵活性。

2、教学节奏快,教学容量大,比较扎实

3、学生学习习惯好

4、教学中的闪光点可以放得更大,给学生提供思维的空间,教师不要过快作评价,抓住课堂生成,让大家辩一辩,理解更深刻一点。

主要问题环节:3、找出下列各数的公因数和最大公因数

4和8 16和32 1和7 8和9

你有什么发现?

当学生说两数一奇一偶,那么这两数的公因数就是1时,老师没有给学生思考、辩论的空间,马上举了一个反例6和9进行反驳,对大部分学生来说理解是不透彻的,而且这也是学生的一个共性问题。

5、 还可以更大气一点,给学生思考的空间更大一点。主要例题环节,两个问题可以一起放下去:“可以剪成边长是多少分米的正方形?你是怎么想的?”动手操作的环节可以取消,让学生通过想象、思维分析来解决,课前的学号游戏也可以取消。 步子可以放得大一点。

三、课后反思:

宋老师的评课让我有柳暗花明更一村的感觉。要想班中的尖子生能跳出来,给孩子提供充分的思维空间非常重要,不要用教学上的小步子来限制学生的思维,对学生的错误要勇敢对待。给孩子充分的反思和辩论的空间,让孩子越变越明,让孩子评价在前,老师评价在后。

可以修改的环节:1、课前通过学号感知环节删去,和后面的例题有一定的 重复。

2、例题环节两个问题可以一起问,给孩子更大的思考空间。学习的过程是一个悟的过程,可以选择边长是几的正方形的呢?你是怎样想的?学生在得到结论的过程中,其思考的过程的就是对意义的感悟的过程,孩子能通过自己的思考方式得出结论,也就找到了求公因数和最大公因数的方法,那么下一个环节让学生直接求两个数的公因数和最大公因数也就没有难度了,而且学生中也能出项用不同的方法来求,方法不会那么单一。当然完全屏弃动手操作我还有我的想法,可以分不同的层次采取不同的方法,“可以选择边长是多少分米的正方形呢?你可以利用手中的学习工具解决这个问题,再想想找出来的边长和长方形的长和宽有什么关系。也可以不用学习工具,请说说你是怎么想的?”这样不同层度的孩子提供不同的学习方式,成一个互相补充、验证的过程。

找因数的教学设计篇二

师:在写12的因数时,我们可以一对一对的写,(课件出示:1、12、2、6、3、4.)也可以从两头开始写(板书:1、2、3、4、6、12.)找全了画一个句号。

3、过渡:12的因数我们已经会找了,那么你能用学到的知识找到18的因数吗?试一试,看谁能挑战成功!

学生尝试,独立在本上完成。

教师巡视,找出几个问题学生和完全写对的学生的作业,在视频台上展示。

学生说如何找全的方法,强化“有序”“一对一对的找”。

板书:18的因数有:1,2,3,6,9,18。

集合图的形式表示。(课件出示)

4、及时反馈:写自己学号的因数。

学生在学号纸上独立完成,指名板演2的因数,24的因数,25的因数,1的因数。

做完的同学,互相检查纠错。

师:谁刚才帮别人找到错误了?(评价:你已经熟练的掌握了找因数的方法,真棒!还有谁是最棒的?祝贺你们)

学生说出“24”和“25”的最小因数和最大因数各是多少。

通过找这些数的因数,从中你发现了什么?学生回答:一个数的最小因数是1,最大因数是它本身。

其他同学根据发现的规律自己检验,并用彩笔圈起来。

小结:虽然一个数,它因数的个数有多有少,但最小的因数是1,最大因数是它本身。1的因数只有1。因为一个数的因数有最大和最小,所以个数是有限的。(板书在表格里)。

四、找一个数的倍数。

1、过渡:我们已经学会了找一个数的因数,那么怎样找一个数的倍数呢?你能像找一个数的因数那样有序的找吗?相信这个问题也一定难不倒大家,咱们先来试一个简单的,找2的倍数,看你能找多少个。

2、学生独立找,找好后在小组中交流。

3、汇报展示,交流方法。

引导:你能按从小到大的顺序找2的倍数吗?能写得完吗?怎么办?

明确方法:用2分别乘1、2、3、4……得到的积都是2的倍数。

4、表示方法:2的倍数有2,4,6,8,10,…(一般写完前5个,就可以用省略号表示);集合图。

5、写出自己学号的倍数。

学生独立完成,指名两生板演(3的倍数,5的倍数,1的倍数),纠正错误。

小组合作:在找一个数的倍数时,你有什么发现?

交流汇报:一个数的最小倍数是它本身,没有最大的倍数,个数是无限的。

找因数的教学设计篇三

新人教版小学数学五年级下册第13~16页。

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。

自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。

学号牌数字卡片(也可让学生按要求自己准备)。

谈话法、比较法、归纳法。

快乐学习、大胆言问、不怕出错!

课前安排学号:1~40号

课前故事:说明道理:学习最重要的是快乐,要掌握学习的方法。

问:“我们在因数与倍数的学习中,研究的数都是什么数?”(整数)

谁能说说10的因数,你是怎么想的?

今天,我和大家一道来继续共同探讨“因数与倍数”

b、探究找一个数的因数的方法(谈话法、比较法、归纳法)

1、谁来说说18的因数有哪些?

学生预设:有的学生可能会说还有6*3,9*2,18*1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。

d、介绍写一个数因数的方法

可以用一串数字表示;也可以用集合圈的方法表示。

说一说:

18的因数共有几个?

它最小的因数是几?

最大的因数是几?

2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)

a、30的因数有哪些,你是怎么想的?

b、36的因数有几个?你是怎么想的?为什么6*6=36,这里只写一个因数?

d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?

学生总结:

板书:

一个数最小的因数是1;

最大的因数是它本身;

因数的个数是有限的。

轻松一下:

我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)

b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)

因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。

过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。

a、2的倍数有哪些?你是怎么想的?从1开始做手势:1*2=2,2*2=4,2*3=6,一倍一倍地往上递加。

b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好

c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?

(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)

学生总结:

找因数的教学设计篇四

教学内容:新人教版小学数学五年级下册第13~16页。

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。

教学难点:自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。

教学具准备:学号牌数字卡片(也可让学生按要求自己准备)。

教法学法:谈话法、比较法、归纳法。

快乐学习、大胆言问、不怕出错!

课前安排学号:1~40号

课前故事:说明道理:学习最重要的是快乐,要掌握学习的方法。

教学过程:

一、复习

问:“我们在因数与倍数的学习中,研究的数都是什么数?”(整数)

谁能说说10的因数,你是怎么想的?

今天,我和大家一道来继续共同探讨“因数与倍数”

二、合作交流、共探新知

b、探究找一个数的因数的方法(谈话法、比较法、归纳法)

1、谁来说说18的因数有哪些?

学生预设:有的学生可能会说还有6*3,9*2,18*1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。

d、介绍写一个数因数的`方法

可以用一串数字表示;也可以用集合圈的方法表示。

说一说:

18的因数共有几个?

它最小的因数是几?

最大的因数是几?

2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)

a、30的因数有哪些,你是怎么想的?

b、36的因数有几个?你是怎么想的?为什么6*6=36,这里只写一个因数?

d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?

学生总结:

板书:

一个数最小的因数是1;

最大的因数是它本身;

因数的个数是有限的。

轻松一下:

我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)

b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)

因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。

过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。

a、2的倍数有哪些?你是怎么想的?从1开始做手势:1*2=2,2*2=4,2*3=6,一倍一倍地往上递加。

b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好

c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?

(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)

学生总结:

找因数的教学设计篇五

教学过程:

一,创设情境,明确相互依存的关系。

师:同学们,我们人与人之间存在着各种关系,比如说(指某位同学)他同他的爸爸是什么关系呢?(父子关系)老师和你们是——师生关系。

师:“老师是师生关系”可以这样说吗?为什么?

生:师生关系是指老师和学生之间的相互关系,不能单独说。

师:是呀,人与人之间的关系是相互的,在数学王国里,也有一些存在着相互依存关系的数,这节课我们就来学习。

二、动手操作,感受并认识因数和倍数

(一)、新课引入:

1、师:同学们的桌上都放着12个同样大的正方形,请你用这12个正方形拼成一个长方形,注意每排摆几个?摆了几排?用乘法算式表示你的摆法.

2、进行交流:

师:谁愿意把自己摆长方形的方法和列出的算式讲给大家听?

师:还有其它摆法吗?

还有不同的乘法算式吗?猜一猜,他是怎样摆的?

学生交流几种不同的摆法。随着学生交流屏幕上一一演示。

师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示,千万别小看这些算式,这节课我们就从这些算式中学习两个重要的数学概念”因数和倍数”。(板书课题)

师:我们以一道乘法算式为例。(屏幕出示)

4×3=12,

师:在这个算式中,4、3、12有什么关系呢?

我们一起来读一读:

因为:4×3=12,

所以:4是12的因数,3也是12的因数。

12是4的倍数,12也是3的倍数。

师:读读看,能读懂吗?说一说读后你想到了什么?

生:乘法算式中,两个数存在因数和倍数的关系。

师:他的说法正确吗?我们来继续读。

出示:因为:6×2=12 ,所以——

2和6是12的因数,12是2和6的倍数.

因为:1×12=12 ,所以——

生: 1和12是12的因数,12是1和12的倍数.

师:请把书打到12页,齐读最后自然段的注意。

生:注意,为了方便,在研究因数和倍数的时候,我们所说的数指的是的整数(一般不包括0)。

师:现在你们能把存在因数和倍数关系的条件说得更准确些吗?

生:在非0的整数乘法算式中,两个数之间存在因数和倍数关系。

师:谁也来出个乘法算式说一说。(略)

课件出示:32÷4=8,你能从这个算式中找到因数和倍数吗?

师:我们不仅可以根据乘法算式找因数和倍数,也可以根据除法算式找因数和倍数。 二、创设情境,自主探究找因数和倍数的方法.

1、师:我们刚才初步认识了因数和倍数,明白了因数和倍数都表示几个数之间的关系?(两个)。所以,不能单说哪个数是倍数,哪个数是因数。下面我们进一步来研究因数和倍数。

屏幕显示:

试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

2、3、5、9、18、20

生:2、3、9、18都是18的因数。

师:18的因数只有这4个吗?

师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。请你选择你喜欢的方式,可以同桌合作,小组合作,也可以独立完成,找出18的所有因数。如果能把怎么找到的方法写在纸上就更好了。

生:写后小组内交流。

学生填写时师巡视搜集作业。

2、交流作业。(略)

投影仪出示学生的不同作业。交流找因数的方法。

师:出示18的因数有:1、18;2、9;3、6;

你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?

生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。

师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?

生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……

师:用乘法和除法找都可以,你们认为用什么方法更容易呢?

生:乘法。

板书:18的因数有:1、2、3、6、9、18。

师:18的因数也可以这样表示。(课件出示集合圈图)

组织交流:

通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?

突出要点:有序(从小往大写),一对对找(哪两个整数相乘得这个数),再按从小到大的顺序写出来。

用我们找到的方法,试一个。

课件出示:

填空:

24=1×24=2×( )=( ) ×( )=( ) ×( )

24的因数有:_______________

再试一个:16的因数有

师:一个数的因数,我们都是一对一对地找的,为什么16的因数只有5个呢?

生:因为4×4=16,只写一个4就可以了。

师:观察18、16的所有因数,你有什么发现吗?可以从因数的个数,最小的因数和最大的因数三个方面观察。

生:18的因数有6个,最小的是1,最大的是18.

16的因数有5个,最小的是1,最大的是16.

师:谁能把同学们的发现,用数学语言概括起来。先说给小组同学听。

边交流边板书:

个数 最小 最大

因数 有限 1 它本身

倍数

找因数的教学设计篇六

教学内容:新人教版小学数学五年级下册第13~16页。

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。

教学难点:自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。

教学具准备:学号牌数字卡片(也可让学生按要求自己准备)。

教法学法:谈话法、比较法、归纳法。

快乐学习、大胆言问、不怕出错!

课前安排学号:1~40号

课前故事:说明道理:学习最重要的是快乐,要掌握学习的方法。

教学过程:

一、复习

问:“我们在因数与倍数的学习中,研究的数都是什么数?”(整数)

谁能说说10的因数,你是怎么想的?

今天,我和大家一道来继续共同探讨“因数与倍数”

二、合作交流、共探新知

b、探究找一个数的因数的方法(谈话法、比较法、归纳法)

1、谁来说说18的因数有哪些?

学生预设:有的学生可能会说还有6*3,9*2,18*1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。

d、介绍写一个数因数的方法

可以用一串数字表示;也可以用集合圈的方法表示。

说一说:

18的因数共有几个?

它最小的因数是几?

最大的因数是几?

2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)

a、30的因数有哪些,你是怎么想的?

b、36的因数有几个?你是怎么想的?为什么6*6=36,这里只写一个因数?

d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?

学生总结:

板书:

一个数最小的因数是1;

最大的因数是它本身;

因数的个数是有限的。

轻松一下:

我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)

b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)

因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。

过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。

a、2的倍数有哪些?你是怎么想的?从1开始做手势:1*2=2,2*2=4,2*3=6,一倍一倍地往上递加。

b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好

c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?

(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)

学生总结:

板书:

一个数最小的倍数是它本身;

没有最大的倍数;

倍数的个数是无限的。

(哦,大家这么聪明啊,不用老师教都会了,看来你们真的是太棒了,这也说明学习要学得轻松就一定要掌握~~方法!)

c、看样子大家都满怀信心了,那老师就用黑板上的两个例题来考考大家,看大家的观察能力是不是真的好厉害。

指着板书中的18的因数与2的倍数提问:

你能从中找出既是18的因数又是2的倍数的数吗?(计时开始:10,9,8,~~~)

学生完成后表扬:哇,好厉害!

三、深化练习,巩固新知

1、做练习二的第3题

在题中出示的数字里分别找出8的倍数和9的倍数

注意“公倍数”概念的初步渗透。

3、做练习二的第6题

四、通过这堂课的学习,你有什么收获?

五、布置作业:

六、结束全课:

请学号是2的倍数的同学起立,你们先离场,

不是2的倍数的同学后离场。

七、板书设计:

18=1×18

18=2×9

18=3×6

找因数的教学设计篇七

理解两个数的公因数和最大公因数的意义。

通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

理解公因数和最大公因数的意义。

一、预习砺能

1、提问:什么是因数?怎样找一个数的所有因素?

2、写出16和12的所有因数。

提问:从16和12的所有因素中你发现了什么?

二、导学砺能

1.出示例1。

(2)、以小组为单位,探究如何拼剪正方形。

(3)、多媒体演示剪小正方形的过程,进一步验证学生动手操作的情况。

(4)、通过交流,得出结论:要使所剪成大小相等的正方形且没有剩余,正方形的边长必须既是30的因数,又是12的因数。

2、教学公因数和最大公因数。老师用多媒体课件演示集合图。

1,2,3,6是12和30公有的因数,叫做它们的公因数。其中,6是最大的'一个公因数,叫做它们的最大公因数。

3、引导学生用短除法找两个数的最大公因数。

三、巩固砺能

1、达标练习

完成教材第12页“试一试”。学生完成后归纳出规律。

2、总结评价

通过本节课的学习,我们主要认识了公因数、最大公因数的意义.公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

找因数的教学设计篇八

教学目标:

1、从操作活动中理解因数的意义,会判断一个数是不是另一个数的因数。

2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

3、培养学生的合作意识、探索意识以及热爱数学学习的情感。

教学重点:理解因数的意义

教学难点:能熟练地找一个数的因数。

教具准备:多媒体课件

教学过程:

一、引入新课:

1、课件出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?你还能找出12的其他因数吗?

(指名生说一说)

4、你能不能写一个算式来考考同桌?学生写算式。

5、师:今天我们就来学习因数和倍数。(板书课题:因数和倍数)

齐读教材第12的注意。

二、自学预设:

2、怎样找因数?例如18,36的因数是什么?

3、因数有什么特点?一个数的最小因数是多少?有几个因数?(举例说明)

尝试练习

试着完成p13的做一做练习

三、认识因数与倍数,展示交流

(一)找因数:

1、出示例1:18的因数有哪几个?

学生尝试完成汇报:(18的因数有:1,2,3,6,9,18)

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示。课件出示

5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二).我的质疑

1.谁能举一个算式例子,并说说谁是谁的因数?

2.讨论:0×30×100÷30÷10

提问:通过刚才的计算,你有什么发现?

3.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2)这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

四、反馈检测

1.下面每一组数中,谁是谁得因数?

16和24和2472和820和5

2.下面得说法对吗?说出理由。

(1)48是6的倍数

(2)在13÷4=3……1中,13是4的倍数

(3)因为3×6=18,所以18是倍数,3和6是因数。

3、完成p15第2题

学生自己独立完成,讲评时让学生说一说,是怎么想的?

五、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

板书设计:因数和倍数

18的因数有:1,2,3,6,9,18

一个数的因数::最小的是1,最大的是它本身。

找因数的教学设计篇九

师:在写12的因数时,我们可以一对一对的写,(课件出示: 1、12、2、6、3、4. )也可以从两头开始写(板书:1、2、3、4、6、12.)找全了画一个句号。

3、过渡:12的因数我们已经会找了,那么你能用学到的知识找到18的因数吗?试一试,看谁能挑战成功!

学生尝试,独立在本上完成。

教师巡视,找出几个问题学生和完全写对的学生的作业,在视频台上展示。

学生说如何找全的方法,强化“有序”“一对一对的找”。

板书:18的因数有:1,2,3,6,9,18。

集合图的形式表示。(课件出示)

4、及时反馈:写自己学号的因数。

学生在学号纸上独立完成,指名板演2的因数,24的因数,25的因数,1的因数。

做完的同学,互相检查纠错。

师:谁刚才帮别人找到错误了?(评价:你已经熟练的掌握了找因数的方法,真棒!还有谁是最棒的?祝贺你们)

学生说出“24”和“25”的最小因数和最大因数各是多少。

通过找这些数的因数,从中你发现了什么?学生回答:一个数的最小因数是1,最大因数是它本身。

其他同学根据发现的规律自己检验,并用彩笔圈起来。

小结:虽然一个数,它因数的个数有多有少,但最小的因数是1,最大因数是它本身。1的因数只有1。因为一个数的因数有最大和最小,所以个数是有限的。(板书在表格里)。

四、找一个数的倍数。

1、过渡:我们已经学会了找一个数的因数,那么怎样找一个数的倍数呢?你能像找一个数的因数那样有序的找吗?相信这个问题也一定难不倒大家,咱们先来试一个简单的,找2的倍数,看你能找多少个。

2、学生独立找,找好后在小组中交流。

3、汇报展示,交流方法。

引导:你能按从小到大的顺序找2的倍数吗?能写得完吗?怎么办?

明确方法:用2分别乘1、2、3、4……得到的积都是2的倍数。

4、表示方法:2的倍数有2,4,6,8,10,…(一般写完前5个,就可以用省略号表示);集合图。

5、写出自己学号的倍数。

学生独立完成,指名两生板演(3的倍数,5的倍数,1的倍数),纠正错误。

小组合作:在找一个数的倍数时,你有什么发现?

交流汇报:一个数的最小倍数是它本身,没有最大的倍数,个数是无限的。

找因数的教学设计篇十

( )是( )的因数; ()是( )的倍数,

( )是( )的倍数; ( )是( )的因数;

( )是( )的倍数。 ()是( )的倍数;

(评价:哪个组的同学都做对了,真是好样的!)

4、明确范围:打开书12页明确因数倍数的范围。

学生齐读:为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。

师板书:整数、不包括“0”。

三、找一个数的因数

1、师:通过这些乘法算式,我们找到了12的一些因数,谁能说一说12的因数有哪些?

学生说出,12的因数有6,2,4,3,1,12。

2、师:找完了吗?怎样就能不重复、不遗漏,找到所有的因数?

学生可能说出:依据乘法算式,有序的找。(评价:有序的思考是我们数学中一种很重要的思维方式,这位同学很了不起,你们学会了吗?谁还能再说一说这种方法)

找因数的教学设计篇十一

教学目标:

1.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

2.在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。

重点难点:

初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。

教学方法:

自主学习、合作探究

教学过程:

一、激趣导入

(约5分钟)

课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。

二、自主学习

(约5分钟)

1.几个数()叫做这几个数的公因数,其中最大的一个叫做()

2.16的因数有(),24的因数有(),16和24的公因数是(),最小公因数是(),最大公因数是()。

3.a=225,b=235,那么a和b的最大公因数是()。

4.用短除法求出99和36的最大公因数。

三、合作交流

(约13分钟)

小组合作学习教材第62页例3。

1.学具操作。

用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。

2.仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。

3.总结。

解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。

四、精讲点拨

(约8分钟)

根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。

五、测评总结(约9分钟)

1.达标练习

2.全课总结

这节课你都学到了什么知识?有什么收获?

3.作业布置

练习十五5,6题。

板书设计:

最大公因数(2)

铺砖问题:求公因数

找因数的教学设计篇十二

教学内容:青岛版教材小学数学五年级上册88—91页。

教学目标:

1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。

2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。

教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。

教学难点:探索求一个数因数或倍数的方法。

教具准备:多媒体课件、学生练习题

教学过程:

一、谈话导入。

师:同学们看这是什么?

生:小正方形。

师:想不想知道王老师给大家带来了多少个这样的小正方形?

生:想。

师:多少个?

生:12个。

师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?

生:能。

【设计意图】:以学生熟悉情景引入,激发学生的好奇心。

二、教学因数和倍数的意义

师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?

生:好!

学生汇报:

生1:1×12=12

师:他是怎么摆的?

生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。

课件出示摆法。

师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)

生2:2×6=12

师:猜一猜他是在怎么摆的?

生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。

师:这两种情况,我们也算一种。

生3:3×4=12

师:他又是怎么摆的?

生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。

师:还有其他摆法吗?

生:没有了。

师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)

2.教学“因数和倍数”的意义。

师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。

学生汇报:任选一道回答。

生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。

师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。

师:还有一道算式,谁来说一说?

生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。

师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。

师:通过刚才的练习,你有没有发现12的因数一共有哪些?(生边说老师边有序的用课件出示12的所有的因数。)

师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。

3、5、18、20、36

【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。

三、教学寻找因数的方法。

1、找一个数的因数。

师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?

生:有。

师:老师提个要求:

1)、可以独立完成,也可以同桌交流。

2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。

2、探索交流找一个数的因数的方法。

找一名有代表性的作业板书在黑板上。

师:他找对了吗?

生:没有,漏下了一对。

师:为什么会漏掉?仅仅是因为粗心吗?

生:不是,他没有按照一定的顺序找!

师:那么要找到36所有的因数关键是什么?

生:有序。

师生共同边说边有序的把36的所有的因数板书出来。师:还有问题吗?

生:没有了。

生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?

生:再接着找就重复了。

师:那么找到什么时候就不找了?

生:找到重复了,就不在往下找了。

师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。

师:有失误的学生对自己的错误进行调整。

3、巩固练习。

找出下面各数的因数。

4、寻找一个数的因数的特点。

【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。

四、教学寻找倍数的方法。

1、找一个数的倍数。

生:能!

师:试试看,找个小的可以吗?

生:行!

师:找一下3的倍数。30秒时间,把答案写在练习纸上。??

师:有什么问题吗?

生:老师,写不完。

师:为什么写不完?

生:有很多个!

师:那怎么才能全都表示出来呢?

生:可以加省略号。

师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?

师:谁能总结一下你是怎样找到的?

生:从小到大依次乘自然数。

师:你真会思考!

课件出示3的倍数。

2、找5、7的倍数。

师:我们再来练习找一下5的倍数。

生:5的倍数有:5、10、15、20、25??

生:7的倍数有:7、14、21、28、35??

师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?

生:能!

学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。

四、知识拓展

认识“完美数”。

师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。

小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。

【设计意图】丰富学生的知识,陶冶学生的情操。

教学反思:

找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。

找因数的教学设计篇十三

江苏省兴化市楚水小学 袁世斌 225700 【教学内容】

在学习本单元之前,学生已经较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。这节课将引领学生从一个新的角度(即倍数和因数的角度)来研究非零自然数的特征及其相互关系,为学生进一步学习数的分类、公倍数和公因数以及分数的约分、通分等奠定基础。

1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

理解倍数和因数的意义 【教学难点】

掌握找一个数的倍数和因数的方法 【设计理念】

1、从学生熟悉的生活入手。首先和学生交流生活中人与人的关系,自然过渡到自然数中数与数之间的关系。并由猜老师的年龄,引入倍数的概念以及找一个数倍数的方法。

2、从学生的操作入手。由浅入深,由无序到有序,通过让学生用不同个数的正方形拼成长方形,引入因数的概念,引导学生将数和形有机结合起来,从而有序地找出一个数的所有因数。

一、课前谈话

1、话家常,拉“关系”

是的,在我们生活中人与人之间总会存在着这样那样的关系,而在数字的世界里,数和数之间也会存在各种各样的关系。今天这节课,我们就和大家一起研究两个非零自然数之间的关系。

二、学习倍数的意义

1、猜岁数,引“倍数”

你们为什么异口同声地说我36岁呢?难道只有36是9的倍数吗?

2、按顺序,找倍数

9的倍数除了36还有什么数吗? 能写完吗?为什么?

指出:1倍、2倍往下写,通常只要写出5个,然后用“„„”表示。你能直接写出2的倍数和5的倍数吗? 学生独立书写。

指名回答,板书:2的倍数有2、4、6、8、10、12„„

5的倍数有5、10、15、20、25、30„„ 提问:观察上面的三个例子,你有什么发现?在小组内讨论。

指名汇报,相机出示以下结论:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。

三、学习因数的意义

1、初摆图形,感知“因数” 屏幕出示12个同样大小的正方形

根据3х4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。

同学们一起来读一读,感受一下。

请你从1х12=12;2х6=12这两道算式中任选一题,用上面的话说一说。

2、再摆图形,感受“顺序”

学生独立练习后,组织汇报。

根据学生的回答,投影出示相应的拼法,并相机板书:16÷1=16

16÷2=8 16÷4=4

你能结合这道算式,说说谁是谁的倍数,谁是谁的因数吗?

你能连起来说说16的因数有哪些吗?相机板书:16的因数有:1、16、2、8、4 3是不是16的因数,为什么?5呢?明确因倍关系的依据。

3、数形结合,掌握方法

将你找出的36的因数写在练习纸上。

展示学生的作品。36的因数有:1、36、2、18、3、12、4、9、6.将方法优化:根据数形结合的思想,运用除法算式一对一对地找一个数的因数更为简便,并且能够做到不重复、不遗漏。

4、观察思考,发现规律

引导学生观察12的因数、16的因数和36的因数。

提问:观察上面的三个例子,你又有什么发现?在小组内讨论。

明确:1是所有非零自然数的因数。

既然1是所有非零自然数的因数,那么换句话说,也就是所有非零自然数都是1的?(让学生接上说倍数)

四、综合练习,加深理解

2、你猜、我猜、大家猜

1)、茶杯每只4元,我去超市买了一些茶杯,猜猜我可能用了多少元? 让学生尽可能说出不同答案,师适时追问:可能吗?如有错误,要求学生说出错在哪里,明确用去的钱数是4的倍数。

2)、出示边长3厘米的正方形。

a、长24cm、宽8cm

b、长36cm、宽4cm

根据12的因数的个数比16的因数的个数多,引导学生得出并不是数字越大,因数的个数就越多。然后然学学生找出60的所有因数。

五、总结延伸

找因数的教学设计篇十四

教学过程:

一、认识倍数和因数

生:1×12

师:猜猜看,他每排摆了几个,摆了几排?

生:12个,摆了一排。

生:三四十二

生齐:2×6

师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。

师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。

师板书:因数和倍数

师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行?

师:谁先来?

生说略

师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?

生:12是12的因数,12是12的倍数。

生:自然数

师:而且谁得除外。

生:0

师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。

3、5、18、20、36

生说略。

二、探索找因数倍数的方法

生1:3、18

师:还有谁?

生2:36

师:3、18、36都是36的因数,只有这3个吗?

生1:1

生2:4

生3:6

师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。

学生填写时师巡视搜集作业。

师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为a、b、c师板书。

a:2、4、13、12、18、36

b:1、2、4、3、6、9、12、18、36

c:1、36、2、18、3、12、4、9、6

师:关于a这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。

生1:都对的

师:有没有道理?看来要找一个人的优点挺困难的。

生2:写全了

生大声说:没有!

生:没有写全,少了3、6、9。

生:36÷4,只写了4,没写9

师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?

生齐:两个两个找。

生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。

师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。

师:第二个同学有没有找全,有没有更好的建议送给他。

生:他应该把4、3调换一下。

师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?

生:他们那样还要头对尾头对尾的,像这样直接就可以写了。

师:有没有听明白,也是同样一对一对出现的。

生:大小没有排,b大小排完后从小到大很舒服。

师:你看你那个舒服吗?

生:舒服

师:正是因为你的质疑,他把方法说了出来。他用了什么?

生:乘法口诀

师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。

生1:找到开始重复就不找了

生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。

师:体会体会1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。

生:

生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。

师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20

生齐:1、2、4、5、10、20

再试一个:15,写在练习纸上。学生汇报

师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。

生:21、300

师:你能把3的倍数全部写下来吗?

生:不能。太多太多了。

师:那怎么办?写不完可以用省略号表示。试试看。

学生练习纸上完成,汇报。

师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的?

生1:3×1、3×2

找因数的教学设计篇十五

教材分析:

这部分教材首先以例题的形式介绍因数和倍数的概念,然后在例1和例2中分别介绍了求一个数的因数和倍数的方法,引导学生从本质上理解概念,避免死记硬背,向学生渗透从具体到一般的抽象归纳的思想方法。

了解学生:

学生已经学习了四年的数学,有了四年整数知识的基础,本课利用实物图引出乘法算式,然后引出因数和倍数的含义,培养了学生的抽象概括能力。

教学目标:

1、知识技能:(1)理解和掌握因数、倍数的概念,认识它们之间的联系和区别。(2)学会求一个数的因数或倍数的方法,能够熟练地求出一个数的因数或倍数。(3)知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

2、过程方法:经历因数和倍数的认识以及求一个数的因数或倍数的过程,体验类推、列举和归纳总结等学习方法。

3、情感态度:在学习活动中,感受数学知识之间的内在联系,体验发现知识的乐趣。

教学重点:学会求一个数的因数或倍数的方法。

教学难点:理解和掌握因数和倍数的概念。

教学准备:课件、作业纸。

教学过程:

一、创设情境——找朋友

1、唱一唱:你们听过“找朋友”这首歌吗?谁愿意大声的唱给大家听?(一名学生唱,师评价:老师很喜欢你的声音,你敢于表现自己,老师很愿意和你成为好朋友)

2、说一说:谁能具体的说一说“谁是谁的好朋友”?(鼓励:老师希望能听到更多人的声音)

学生完整叙述:“××是 李老师的朋友,李老师是××的朋友”。

3、引入新课:同学们说的很好,那能不能说老师是朋友,××是朋友?看来,朋友是相互依存的,一个人不会是朋友。今天我们就来认识数学中的一对朋友“因数和倍数”(板书课题)

二、探究新知

1、提出问题:现在有12名同学参加训练,要排成整齐的队伍,可以怎样排?用一个简单的乘法算式表示出排列的方法。

学生可能得到:每排6人,排成2排,2×6=12;

每排4人,排成3排,4×3=12;

每排12人,排成1排,1×12=12。

课件出示相应的图和算式。

2、揭示概念:以2×6=12为例。

边说边板书:( )是12的因数,( )是12的因数;

12是( )的倍数,12是( )的倍数。

学生同桌互相说,指名两名同学说。(评价:这么短的时间内,同学们就能准确、完整的表述它们之间的因倍关系,真了不起。)

突出强调:能不能说12是倍数,2是因数?(学生回答,揭示并板书:相互依存)

3、强化概念:另外两道乘法算式,你也能像这样准确地写出它们之间的关系吗?分组比赛,在作业纸上完成,看哪个组能完全做对。

学生在作业纸上完成,同时课件出示:(指名两名学生在白板上利用普通笔标注答案)

找因数的教学设计篇十六

1.教学中帮助学生从已经据有的经验出发,在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考的能力。

2.在1~100的自然数中,能找出某个自然数的所有因数。

体会找一个数的因数的方法

提高有序思考的能力

师:同学们喜欢做拼图的游戏吗?

也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录.

然后,把你拼摆的过程和你的伙伴说说。

1、学生:用12个小正方形自由拼(画)长方形

(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)

参与小组活动,指导学生总结学法.

师:你是怎样拼的,说说好吗?

学生代表一边汇报,一边将所拼的图在黑板上进行演示

注意让学生指图说明。

2、思考:请同学们在合作交流中总结出找一个数的因数的基本方法。

(或者用乘法思路想:哪两个数相乘得12?然后一对一对找出来。)

全班交流

师:我发现同学们真的很聪明,谁愿意把你的想法说给大家听?

(每个小组由一名代表在全班汇报思考的过程,再次体会“想乘法算式”找一个数的因数的方法。)

学生回答,老师同时板演:

(3种,算式一样的可选择其中的一种说出来。)

及时板书:1×12=12 2×6=12 3×4=12

或:12=1×12=2×6=3×4

师:由黑板上整理出的算式可见,12的因数有哪些呢?

(1、12、2、6、3、4)

引导思考:找一个数的因数怎样做到即不重复又不遗漏呢?

(通过以上的拼、画、小组交流,学生已经有所发现。)

学生的答案:

(1)我发现积是12的乘法算式中,它们的因数都是12的因数。

(2)我发现可以利用乘法口诀一对对的找12的因数。

师:谁能按顺序说出来?

(1、2、3、4、6、12)

3、小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。

1、独立完成第8页“试一试”,注意关注学生是否注意有序思考。

(9的因数:1、3、9 15的因数:1、3、5、15)

2、师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们做课本第9页的练一练的第1、2题。

第1题学生独立完成,同桌交流。

(教师巡视,发现问题及时解决。)

第2小题小竞赛:看谁找的快

3、师:同学们已经学会了拼长方形找因数,现在能不能在小方格中画出长方形找因数呢?请做第9页的第3题。

(1×16=16 2×8=16 4×4=16)

(16=1×16=2×8=4×4)

(16的因数:1、2、4、16)

4、下面的数,各有几个因数

1 19 4 32 11

总结:同学们说得很好,我们利用找因数的方法可以解决很多实际问题。

师:这节课你学会了什么呢?用学到的方法我们都可以做些什么?

找因数的教学设计篇十七

教学目标:

1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。

2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。

教学重点:

求两个数的公因数和最大公因数。

教学难点:

理解求公因数和最大公因数的方法。

教学准备:

小黑板

教学过程:

一、铺垫准备

1.直观演示,作好铺垫。

出示边长6厘米和边长5厘米的两个正方形。

提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?

2.引入新课。

谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。

二、学习新知

1.认识公因数。

(1)出示例9,了解题意。

启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。

交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?

结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3184=4......2)

(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。

【本文地址:http://www.xuefen.com.cn/zuowen/4036696.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档