教案比的意义(热门18篇)

格式:DOC 上传日期:2023-12-06 12:48:13
教案比的意义(热门18篇)
时间:2023-12-06 12:48:13     小编:文轩

教案是教师为了组织教学活动而编写的一种教学设计文稿。教案中的教学活动要贴合课程目标,注重培养学生的综合能力。掌握好教案的编写步骤可以更好地指导教学实践。

教案比的意义篇一

教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

乘法的意义和乘法交换律。

新授课练习课。

讨论法、讲授法。

一课时。

多媒体。

教师出示复习题。

1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

上面这些题哪些可以用乘法计算?为什么?

用加法计算:5+5+5+5+5+5=30(个)。

用乘法计算:5×6=30(个)。

解答这道题用乘法计算简便还是用加法计算简便?

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1。

一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0。

2、教学乘法交换律。

让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)。

比较一下这两个乘法算式,有哪些相同?有哪些不同?

学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a。

1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

2、做练习五的第3、4题。学生独立做完后,再集体核对。

小结:今天我们学了什么?什么叫乘法的交换律?

附板书:乘法的意义和乘法交换律。

用加法计算:5+5+5+5+5+5=30(个)。

用乘法计算:5×6=30(个)。

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1。

一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0。

两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a。

教案比的意义篇二

1.使学生进一步理解并掌握分数的意义。

2.知道一个物体、一个计量单位、一个整体都可以用单位“1”表示。

3.引导学生学会抽象概括,培养初步的逻辑思维能力。

1.理解和掌握分数的意义。

2.理解单位“1”。

3.突破一个整体的教学。

正方形纸片。

一、创设情境。

1.测量。

师生合作测量黑板的长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)。

2.计算。

教师让学生把一个苹果平均分给两个同学,每人分得饼的个数怎样来表示?它结果不能用整数来表示,这样就产生了分数。

3.讲述。

在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的'数——分数来表示,这样就产生了新的数—分数。今天,我们就来学习“分数的意义”。

二、教学实施。

1、出示课件。

说说每个图下面的分数是:

(1)把什么看做一个整体?

(2)平均分成了几份?

(3)表示这样的几份?

2、小组共同合作交流。

1.出示4个苹果,6只熊猫能否平均分成若干份,要平均分,把什么看作一个整体?

2.结合小组汇报出示课件,展示结果。

3、概括总结。

老师:刚才同学们在表示的过程中,有什么发现吗?

学生甲:都是把物体平均分成几份,表示这样的一份。

学生乙:我发现有的是把1个图形平均分,有的是把4个苹果、6只熊猫平均分,还有的是把1米平均分。

老师:一个图形比较好理解,我们把它称为一个物体,那么4根香蕉8个面包是由许多单个物体组成的,我们称作一些物体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。

(3)举例。

老师:对于这个整体,你还能想出其他的例子吗?

学生:这个整体还可以是一个苹果、一盒粉笔、一个班级的学生人数、全校学生数、全中国人口、全世界人口等。

3、(1)概括意义。

学生试说,教师板书。

板书:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。强调必须是平均分。

揭示课题:分数的意义。

4、巩固练习。

课本62页做一做,填在书上,学生汇报。

5.学习分数单位。

(1)提出问题:“我们学过的整数和小数,它们都有计数单位,分数有没有计数单位呢?”让学生自学课本,找出分数单位的定义,并能举出例子。

(2)说一说课本62页做一做各分数的分数单位,它们分别有几个这样的分数单位。

(3)分数单位与哪个数有关?

让学生观察分数单位,从中发现“分母是几,分数单位就是几分之一”。

三、巩固练习。

出示课件。

四、、总结。

1、想一想,这堂课上你学到了什么?

板书设计。

一个物体。

一个整体单位“1”平均分若干份(一份)。

一些物体分数单位。

教案比的意义篇三

这部分内容主要教学比的意义、比与分数、除法的关系。例1、例2教学认识比的意义。认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。在例1、例2随后的“试一试”、“练一练”中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的意义,并主动探索比与分数、除法的关系。

练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。

可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

难点:理解比与分数、除法的关系。

教学准备:多媒体课件、挂图、小黑板。

1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)。

设计意图:

开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。

本节课的内容是在学生学习除法的意义、分数的意义,以及分数与除法的关系,掌握了分数乘除法的计算方法,会解答分数乘法实际问题的基础上进行教学的。

比、除法和分数之间有着一定的联系,在除法中,比的前项相当于除法中的被除数,比的后项相当于除数,比号相当于除号;在分数中,比的前项相当于分数的分子,比的后项相当于分母,比号相当于分数线。在教学中,我首先出示一道除法算式2÷3=2/3,然后指出这个算式也可以写成2:3=2/3,从而直观地让学生观察到除法、比和分数之间的关系。在此基础上再联系除法和分数的意义,如:2÷3表示2是3的几分之几或3是2的几倍;3小时行60千米,算式60÷3既表示每小时行多少千米,又表示路程和时间的比是60:3;男生的人数是女生的2/3,也表示男生和女生人数的比是2:3。通过这样的教学,只有了解学生已有的知识经验,才能让学生把新旧知识联系起来,有效地促进学生对知识的掌握。

使学生明确足球比赛中的3:2与我们所学比的知识的区别。知道比赛中的比是相差关系,而我们所学的比是相除的关系。不足之处:在教学比的意义时,对谁是谁的几倍或几分之几也可以说成谁和谁的比,强调的还不够,使学生的对两个数相除也可以说成两个数的比的感悟不深刻,导致个别同学出现比的顺序颠倒的现象。

教案比的意义篇四

这部分内容主要教学比的意义、比与分数、除法的关系。例1、例2教学认识比的意义。认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。在例1、例2随后的“试一试”、“练一练”中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的。意义,并主动探索比与分数、除法的关系。

练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。

可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

难点:理解比与分数、除法的关系。

教学准备:多媒体课件、挂图、小黑板。

一、谈话导入。

1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)。

设计意图:

开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。

教案比的意义篇五

教学目标:

1、运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义。

2、感受比在生活中的广泛应用,提高解决问题的能力。

教学重点:

理解按一定的比来分配一个数量的意义。

教学难点:

根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地运用乘法求各部分量。

教学过程:

一、谈话导入:

同学们,我们已经认识了比,那么比在生活中有什么用途呢?这节课我们就来探究一下比在生活中的应用。

二、交流预习情况:

1、集体订对获取的数学信息及提出的问题。

师板书摘要:

信息:一筐橘子,分给大班和小班,已知大班30人,小班20人。

问题:怎么分合理?能不能按比分配?

2、小组交流解决问题的策略(要求小组每人发言)。

3、小组汇报:

方案一:大班30个,小班20个,分完为止;

方案二:大班3个,小班2个,分完为止;

方案三:大班30个,小班20个,剩下的平均分;

方案四:大班往小班去5人,然后平均分;

方案五:数清橘子总数,除以总人数,再用每人所分个数乘各班人数即各班所得;

方案六:将橘子平均分成5份,大班3份,小班2份;

……。

4、针对方案同学提出疑义,并作出更改;

在解决疑问中,明确和以前所学的平均分有所不同。

更改如:大班30个,小班20个,剩下的不能平均分,要按3:2分才合理;

5、比较发现合理方案的共同点:不管怎么分,都要保证最终两个班分到的橘子数量的比要和两班的人数比相等。

三、尝试解决问题:如果共有140个橘子,该怎么分?

同桌交流后列式解决,指生上堂板演并讲解解题思路:

解法一:30:20=3:23+2=5140÷5=28(个)。

大班:28×3=84(个)小班:28×2=56(个)。

解法二:30:20=3:23+2=5。

大班:140×=84(个)小班:140×=56(个)。

四、师生总结解题方法。

今天遇到的问题不是平均分,而是按一定的比进行分配的问题,我们是把按比分配的问题转化成了以前的平均分问题,只是要按比所表示的份数平均分。

思路:已知整体,按比把它分成两部分或几部分,求各部分。

板书:总数量×=各部分的数量。

五、巩固练习p55试一试,练一练1题。

独立完成,集体订正。

六、小结(学生小结,师生补充)。

板书设计:

总数量×=各部分的数量。

教案比的意义篇六

教学目标:

〈一〉知识与技能

1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值

2.在具体情境中了解概率的意义

〈二〉教学思考

让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.

〈三〉解决问题

在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.

〈四〉情感态度与价值观

在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的.乐趣.通过概率意义教学,渗透辩证思想教育.

【教学重点】在具体情境中了解概率意义.

【教学难点】对频率与概率关系的初步理解

【教具准备】壹元硬币数枚、图钉数枚、多媒体课件

【教学过程】

一、创设情境,引出问题

教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.

学生:抓阄、抽签、猜拳、投硬币,

教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)

追问,为什么要用抓阄、投硬币的方法呢?

由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大

在学生讨论发言后,教师评价归纳.

教案比的意义篇七

比4,女生人数和男生人数的比是4比5;汽车每小时行60千米,也可说成汽车行驶路程和所用时间的比是18比3。→两个数相除,又叫两个数的比。

2、学课本,思考:比的读法、写法、比各部分名称,什么叫比值?如何求比值?

修改意见。

3、班级交流,落实上述知识点。

4、完成试一试1、2。

三、完成练一练1、2、5;

练一练4同上。

四、作业:《作业本》。

教案比的意义篇八

(1)在日常的工作的生活中,常常把两个数量进行比较。(2)“:”是比号,读作“比”。比号前面的数叫做比的前项。比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法相比,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)根据分数与除法的.关系,可以知道:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。比――比的意义作文200字。

小学生作文(中国大学网)。

教案比的意义篇九

2.使学生理解和掌握乘法交换律,并能运用它进行验算.。

教学重点:

使学生理解并运用乘法的意义及其运算定律――交换律.。

教学难点:

乘法交换律的应用.。

教具学具准备。

口算卡片、投影仪.。

教学步骤。

一、铺垫孕伏。

1.口算:14×350×302×5015×415+15+15+15。

4+4+4+430×1260×404×259+9+9+9+9。

2.导入:刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识.乘法的意义和乘法的交换律.(板书课题)。

二、探求新知。

教案比的意义篇十

2.过程与方法:通过加强操作、直观沟通概念间的联系和区别,增加练习来突破难点。

3、情感与态度:培养学生有条理,有根据的思考能力,发展抽象思维。

理解整数、约数和倍数的概念。

整数、约数和倍数的联系。

一、复习

1、师:谁能说说整数的含义?

出示:23÷7=3...26÷5=1.15÷3=524÷2=12

让学生观察算式,说说式中被除数、除数和商各有什么特点?

教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?

教师:a的约数还可以叫做什么?

让学生用两种说法说说:15÷3=5和24÷2=12

教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

(1)被除数和除数必须是整数,而且除数不等于0。

(2)商必须是整数。

(3)商的后面没有余数。

师:以上三个条件,缺一不可。

2、区别“除尽”与“整除”

师:像6÷5=1.2这样的除法,一般说6能被5除尽。

被除数和除数

整除

都是整数,除数不等于0

商是整数,而且没有余数

除尽

不一定是整数,除数不等于0

商是有限小数,没有余数

二、新课

1、教学约数和倍数的意义。

在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)

让学生看50页关于约数和倍数。

教师:两个数在什么情况下才能说有约数和倍数关系?(整除)

能单独说一个数是约数或一个数是倍数吗?

“倍数和约数是相互依存的.”是什么意思?

:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。

2、教学例1

(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。

教师:15能被3整除吗?

15是3的什么数?

3是15的什么数?

教师指出:这里所说的数一般是指自然数,不包括0。

(2)“倍数”与“倍”的区别

1、基本练习p51做一做

三、巩固练习

1、独立完成练习十一的1、2、3题。

2、第四题

教师:要判断哪些数是60的约数,只要看那哪些数能整除60。

要判断哪些数是6的倍数,就要看哪些数能被6整除。

教案比的意义篇十一

活动目标:

1.体验从高到矮或从矮到高的排列顺序。

2.大胆地用语言表述排列的结果。

活动准备:

1.事先联系好一个小朋友的爸爸妈妈来幼儿园配合幼儿活动。(也可利用图片的方式)。

2.《幼儿画册》(第三册p7)。

活动过程:

教案比的意义篇十二

本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。

这部分内容是在学生学过分数与除法的联系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关。

1、通过实物及学过的联系式等概括出比的意义,用讲授法讲解说明两个数的比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。

2、举例说明比值的求法,以以及比和除法的联系。

;常分米,款分米的红旗一面,投影仪一、复习引入。

1、出示红旗。

讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?

引导学生回答:

要表示红旗的长和宽的联系,可以求长是宽的几倍,或者宽是长的几分之几。

板书;3÷2=3/2……长是宽地3/2。

2÷3=2/3……宽是长到2/3。

二、探究新知。

1、导入新课。

板书:比。

1、)红旗长和宽的联系,也可以这样说:

长和宽的比是2比3,

宽和长的比是2比3。

2、)出示投影片:

“一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?”

求汽车路程和时间的比是:100比2。

4、)教师小结:两个数相除又叫做两个数的比。

3、教学比的读写法,各部分的名称及求比值的方法。

1、)比的写法:3比2记作3:2。

2比3记作2:3。

100比2记作100:2。

3、)比的各部分的名称:

3:2=3÷2=3/2。

||||。

前项比号后项比值。

4、)比值;。

比的前项除以后项所得的商,叫做比值。

说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。

比的后项不能0。

4、做教科书第62页上半部分的“做一做”的题目。

5、教学比与除法、分数的联系。

6、做教科书第61页下半部分的“做一做”的题目。

三、巩固练习:

1、做练习十七的第1题。

2、做练习十七的第2、3题。

四、课堂小结:

同学们,这节课我们学到了什么知识?如何求比值?

板书设计:

3、比。

比的各部分名称:3:2=3÷2=3/2。

||||。

前项比号后项比值。

比值:比的前项除以后项所得的商,叫做比值。

教案比的意义篇十三

城南小学电子教案(数学)。

编写者。

执教者:

执教时间:年月日(第周)。

课题。

比和比例。

第课时。

教学内容。

教学目标。

1、理解比的意义,了解比的各部分名称;

2、理解比值的概念,能正确地求出比值;

教学重点。

教学难点。

沟通比和除法的关系。

教学准备。

一、复习导入:

2、一辆汽车3小时行驶180千米,每小时行多少千米?

导入:两个数进行比较,除了用除法算以外,在生产实践与生活中还有一种新的比较方法,这就是“比”,那么比的意义是什么?比的读法和写法怎样?比的各部分名称叫什么?这就是本节课我们要学习研究的内容。(揭题)。

二、展开:

比4,女生人数和男生人数的比是4比5;汽车每小时行60千米,也可说成汽车行驶路程和所用时间的比是18比3。→两个数相除,又叫两个数的比。

2、学课本,思考:比的读法、写法、比各部分名称,什么叫比值?如何求比值?

修改意见。

3、班级交流,落实上述知识点。

4、完成试一试1、2。

三、完成练一练1、2、5;

练一练4同上。

四、作业:《作业本》。

教案比的意义篇十四

(一)。

一、填空。

1、某校六年级一班有男生24人,女生25人。

(1)、男生人数与女生人数的比是(),比值是()。

(2)、女生人数与男生人数的比是(),比值是()。

(3)、女生人数与全班人数的比是(),比值是()。

(4)、全班人数与女生人数的比是(),比值是()。

2、小明3分钟走了240米,小杰5分钟走了350米。

(1)、小明与小杰行走时间的比是(),比值是()。

(2)、小明行走的路程与小杰的路程的比是(),比值是()。

(3)、小明行走路程与时间的比是(),比值是(),比值表示()。

(4)、小杰行走路程与时间的比是(),比值是(),比值表示()。

(5)、小明行走速度与小杰行走速度的比是()。

二、求比值。

5:2.52.8: : :

(二)。

一、填空。

1、男生人数是女生的,女生人数与男生人数的比是()。

2、甲数是乙数的2倍,乙数和甲数的比是()。

甲与乙的速度比是()。

4、甲比乙多3,甲是8,甲与乙两数的比是(),比值是()。

6、两个正方形的边长的比是1:3,它们的周长比是()。

7、甲乙两数的比是2:3,甲是两数之和的()。

8、一个直角三角形中的两个锐角的度数比是1:2,最小的一个锐角是()度。

二、判断。

1、比的前、后项可以是任意数。()。

2、5米比7米的比值是5:7。()。

3、一场球赛的比分是2:0,因此比的后项可以是0。()。

4、3:8可以写成,比值是2。

三、看图填比。

1、甲与乙的比是():()。

2、乙与甲的比是():()。

3、甲与甲乙两数和的比是():()。

4、乙与甲乙两数和的比是():()。

5、甲乙两数差与甲乙两数和的比是():()。

四、解决问题。

2、把10克盐放入100克水中,盐和水的比是多少?盐和盐水的比是多少?

3、一个直角三角形中,两个锐角的度数比是1:1,其中一条直角边长4厘米,

求这个直角三角形的面积。

教案比的意义篇十五

1、知识与能力。

2、生进一步理解整除的意义。

2、使学生知道约数、倍数的含义,以及它们之间的相互依存关系。

3、使学生知道研究约数和倍数时所说的数,一般指自然数。

教学重点:理解整数、约数和倍数的概念。

教学难点:整数、约数和倍数的联系。

教学过程:

1、师:谁能说说整数的含义?

出示:23÷7=3...26÷5=1.2。

15÷3=524÷2=12。

教师:这4个算式中,哪个算式中第一个数能被第二个数整除?

为什么前两个算式中的第一个数不能被第二个数整除?

让学生观察算式,说说式中被除数、除数和商各有什么特点?

教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?

让学生p49页的结语。

教师:a的约数还可以叫做什么?

让学生用两种说法说说:15÷3=5和24÷2=12。

教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

(1)被除数和除数必须是整数,而且除数不等于0。

(2)商必须是整数。

(3)商的后面没有余数。

师:以上三个条件,缺一不可。

2、区别“除尽”与“整除”

师:像6÷5=1.2这样的除法,一般说6能被5除尽。

被除数和除数。

整除。

都是整数,除数不等于0。

商是整数,而且没有余数。

除尽。

不一定是整数,除数不等于0。

商是有限小数,没有余数。

1、教学约数和倍数的意义。

在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)。

让学生看50页关于约数和倍数。

教师:两个数在什么情况下才能说有约数和倍数关系?(整除)。

能单独说一个数是约数或一个数是倍数吗?

“倍数和约数是相互依存的”是什么意思?

:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。

2、教学例1。

(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。

教师:15能被3整除吗?

教师指出:这里所说的数一般是指自然数,不包括0。

(2)“倍数”与“倍”的区别。

1、基本练习p51做一做。

1、独立完成练习十一的1、2、3题。

2、第四题。

教师:要判断哪些数是60的约数,只要看那哪些数能整除60。

要判断哪些数是6的倍数,就要看哪些数能被6整除。

教案比的意义篇十六

教学目标:

1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的基本性质。

2、通过自主探究,掌握化简比的方法并会化简。

3、渗透事物是普遍联系的辨证唯物主义观点。

教学重难点:理解比的基本性质,推导化简比的方法正确化简比。

教法:引导探究。

教学过程:

一、导入:

1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。

2、提问:根据这些信息,你能提出什么数学问题?

板书课题:

二、探究新知:

1、学生按学习指南自学。

学习指南:根据题意可以怎样表示长和宽的关系?

2、汇报自学情况。

3、教师指导:

长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。

4、苹果有4个,梨有5个。

提问:苹果和梨的关系可以怎样说?

尽量找学困生回答。

5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。

6、学生举例。

请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。

学生互相讨论后,再指名回答。

7、指导学生自学教材后,说说比的含义。

3比23:2。

2比32:3。

100比2100:2。

两个数相除又叫两个数的比。

15:10=15÷10=3/2。

前项比号后项比值。

教师重点指导:

(2)比的后项为什么不能为0?

比分数除法的联系与区别。

三.课堂检测:

完成教材第44页“做一做”的第1、2题。

1.完成教材第47页练习十一的第1——3题。

四.小结:

谈一谈本节课的收获。

教案比的意义篇十七

1、能应用正负数表示生活中具有相反意义的量。

2、能说出有理数的意义,能正确对有理数进行分类。

1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。

2、难点:对负数的理解以及正确地对有理数进行分类。

1课时。

一、快乐自学(8分钟)。

由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上-号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

二、合作探究。

1、某地2月18日凌晨1点的温度是0℃,凌晨4点的温度是-2℃,哪个时刻温度低?

2、吐鲁番盆地艾丁湖湖面的海拔高度为-154m,海平面高度为0m,哪个地方低?

3、通常把水结冰时的温度规定为0℃,那么比水结冰时的温度低5℃应记作什么?

4、如果在东西向马路上,把向东走的路程记作正数,那么走-50m是什么意思?

5、粮库把运进的粮食吨数记作正数,在某星期的5天中,进出粮食的记录如下:

星期一二三四五。

说出该粮库在这个星期中粮食进出记录的实际意义。

6、有下列8个数:3.6,,-78,0,-0.37,9,-5.14,-1。其中正数有:

_______________________________,负数有:_______________________________。

三、小结:(3分钟)。

通过本节课的学习,你知道了什么?

四、达标训练。

必做题(2分钟)。

1、正数是____________0的数,负数就是在正数前面加上-号的数,负数__________0。__________________既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

2、把下列各数填在相应的横线上:

-14,2.8,45,,-0.25,0,,2.07,-7.1,181,,3。

选做题(8分钟)。

在书上完成p7b组习题1题,2题。

五、学后反思。

1、通过本节课的学习我知道了。

2、我还存在的疑问是:

3、我对老师的建议是:

教案比的意义篇十八

1、理解比的意义,掌握比的读、写及各部分的名称。

2、理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。

理解比和分数、除法之间的关系。

1、播放“神舟”五号顺利升空课件。

播报:20xx年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。(出示两面国旗:两面国旗都是长15cm,宽10cm。)。

2、提问:我们可以怎样表示它们长和宽的关系呢?

(1)用比多比少的方法来表示:长比宽多5cm,宽比长少5cm。

(2)用倍数关系来表示:长是宽的3/2,宽是长的2/3。

3、导入新课:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)。

学习方式:独立自学、汇报交流。

1、同类量的比。

(2)自学课本第48页的内容。

(3)长和宽的比是15比10,宽和长的比10比15。

(4)指出:不论是长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,这样的两个比我们称为同类的比。

2、不同类量的比。

(1)出示数据,列式求飞船的速度:42252÷90。

(2)用比来表示路程和时间的关系。

提问:路程和时间的关系能不能用比来表示呢?应该怎样表示呢?(路程和时间的比是42252比90)。

(3)提问:路程和时间是不是同类的量?

(4)指出:两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。

3、概括比的意义:通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫做两个数的比”。

学习方式:独立自学、汇报交流。

学习任务。

1、自学课本第49页,思考:几比几怎样写、怎样读?比的各部分名称是什么?

2、汇报交流:15:10=15÷10=3/2。

前项比号后项比值。

3、比值。

(1)什么是比值?怎么求比值?

(2)比值可以怎样表示?(分数、小数、整数)。

(3)讨论:比值和比有什么联系和区别?

学习方式:小组讨论、汇报交流。

学习任务。

1、提问:比的前项、后项和比值分别相当于除法算式和分数中的什么?

区别:除法是一种运算,分数是一种数,比表示两个数的关系。

2、提问:比的后项可以是0吗?为什么?(比的后项不能为0,0没有意义。)。

1、完成课本第49页的“做一做”,集体订正。

2、完成第52页练习十一的第1题。

这节课我们一起研究了比,回顾一下你有什么收获。

【本文地址:http://www.xuefen.com.cn/zuowen/17645393.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档