教案的编写需要根据不同教材和学生的实际情况进行调整和改进。在编写教案时,可以参考和借鉴其他教师的成功经验和教学方法。以下是小编为大家整理的一些教案范例,供大家参考学习。这些教案覆盖了不同学科和年级的教学内容,涉及了多种教学方法和活动设计,可以帮助教师更好地理解教案编写的原则和技巧,提高教案设计的能力和水平。同时,教案范例也可以作为教师备课的重要参考资料,提供了丰富的教学思路和教学资源,帮助教师更好地组织教学过程和开展教学活动。大家一起来看看吧,相信对于教案编写会有所启发和帮助。
教案比的意义篇一
教学重点。
教学难点。
沟通比和除法的关系。
教学准备。
教
学
过
程
一、复习导入:
2、一辆汽车3小时行驶180千米,每小时行多少千米?
导入:两个数进行比较,除了用除法算以外,在生产实践与生活中还有一种新的比较方法,这就是“比”,那么比的意义是什么?比的读法和写法怎样?比的'各部分名称叫什么?这就是本节课我们要学习研究的内容。(揭题)。
二、展开:
教案比的意义篇二
四年级数学下册《乘法和除法的意义及各部分间的关系》教学设计教学目标:
1、借助解决问题概括乘除法的意义,理解除法是乘法的逆运算,并会在实际中应用。
2、总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算。
3、在分析过程中,培养学生的推理、概括能力。
教学重点:总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算。
教学难点:理解除法的意义及乘除法的互逆关系。
教学过程:
1、谈话。师生相互交流兴趣爱好。
(1)生谈爱好。
(2)师:老师的爱好是插花,昨天下午老师老师就在花瓶里插了几瓶花,来看看吧。
(3)投影展示课本插图。
1、从图中,你能获得哪些数学信息?
2、根据获得的信息,你能提出一个数学问题吗?学生口答教师课件出示(1)。
3、会解决这个问题吗?请大家快速列式计算。
4、学生汇报算式:用加法算:3+3+3+3=12;用乘法算:
5、哪个算式简单?比较这两个算式,你能说说怎样的运算叫做乘法?
6、学生汇报后小结:求几个相同加数的.和的简便运算,叫做乘法。
7、师说明乘法各部分名称并板书在下边。
1、能不能试着把这道乘法应用题改编成除法应用题呢?
2、学生回答后教师出示例2(2)(3)。
4、小组交流后汇报,教师板书算式。
6、根据回答板书:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。并说明除法各部分名称。
7、我们来简单回顾一下,第1题是求4个3的和,用乘法计算,第2、3题正好相反,是已知4和3的积是12,还知道其中一个因数是34或者4,求另一个因数,用除法计算,从这三道题的计算和除法的意义可以看出,除法运算和乘法运算实际上是相反的运算,所以,我们说除法是乘法的逆运算(板书)。
2、会用等式表示各部分之间的关系吗?
2.通过今天的学习,对乘除法是否有了新的认识呢?谁来说说你的收获?
教案比的意义篇三
比例的意义和基本性质(省义务教材第十二册)。
1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。
2、利用比例知识解决实际问题。
3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
一、谈话导入,创设情境:
我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
二、自主探究,学习新知。
1、8厘米。
出示。
6厘米。
4厘米。
3厘米。
(1)根据表中给出的数量写出有意义的比。
(2)哪些比是相关联的?
(3)根据以往经验,可将相等的两个比怎样?(用等号连接)。
教师并指出这些式子就是比例。
2、让学生任意写出比例,并让学生用自己的语言描述比例的意义。
3、教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。
4、写出比值是1/3的两个比,并组成比例。
(二)教学比例的基本性质。
1、比例和比有什么区别?
2、认识比例的各部分。
(1)让学生自己取。
(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的。
外项,中间的两项叫做比例的内项。
板书:8:6=4:3。
内项。
外项。
(3)让学生找出自己举的比例的内外项。
()。
12。
2
()。
=
(4)找出分数形式比例的内外项位置又是怎样的?
3、出示【启迪学生思维,展开审美想象】。
(1)这个比例已知的是哪两项,要求的.又是哪两项?学生试填。
(2)学生反馈,教师板书。
(3)你发现了什么?
(4)指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。
4、用比例性质验证你所写比例是否正确。
5、练习8:12=x:45。
0.5。
x
20。
32。
=
求比例中的未知项,叫做解比例。
如何证明你的解是正确的?
(三)小结:今天这堂课你有什么收获?
三、巩固练习。
1、下面哪几组中的两个比可以组成比例。
4
1
12:24和18:36。
0.4:和0.4:0.15。
14:8和7:4。
5
2
2、根据18x2=9x4写出比例。【体会到数学的逻辑美,规律美】。
3、从1、8、0.6、3、7五个数中。
(1)选出四个数,组成比例。
(2)任意选出3个数,再配上另一个数,组成比例。
(3)用所学知识进行检验。
四、实际应用。
不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”
同学们,如果你是汪骏强,你准备怎么办?
执教者方艳。
教案比的意义篇四
比4,女生人数和男生人数的比是4比5;汽车每小时行60千米,也可说成汽车行驶路程和所用时间的比是18比3。→两个数相除,又叫两个数的比。
2、学课本,思考:比的读法、写法、比各部分名称,什么叫比值?如何求比值?
修改意见。
教
学
过
程
3、班级交流,落实上述知识点。
4、完成试一试1、2。
三、完成练一练1、2、5;
练一练4同上。
四、作业:《作业本》。
教
后
反
思
教案比的意义篇五
1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。
2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。
正确区分等式和方程这组概念。
简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。
同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的请举手?
这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)。
当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。
谁想上来玩?
你能用一个数学式子来表示这时候的现象吗?(用水笔板书:20+20<50)。
再在左边放一个10克的法码,这时天平怎么样?(平衡了)。
看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?
给你们5分钟的时间,比一比哪个小组又快又好。
哪个小组把自己所写的式子拿上来展示出来。
(有不一样的都可以拿上来)。
你们对这些式子满意吗?
谁来说说你们是按照什么标准分的?
1、如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板分,其余的口头交流。
2、把学生写的式子分成两堆,让学生分]。
师:你能把这一种再分成两类吗?怎么分?指名板演。
你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)。
象这样,含有未知数的等式我们把它叫做方程。这也是我们今天这堂课要学习的内容。出示课题。
练习:你能举一个方程的例子吗?学生在本子上写一个。
回忆一下,我们以前见过方程吗,在哪见过?(学生展示交流)。
老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)。
通过这几道题的练习,你对方程有了哪些新的认识?
(1)未知数不一定用x表示。
(2)未知数不一定只有一个。
一个方程,必须具备哪些条件?
师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?
如果老师说,方程一定是等式。对吗?(结合板书交流)。
等式也一定是方程。(结合板书交流)。
也就是说:方程一定是(等式),但等式[不一定是(方程)]。
你能用自己的方式来表示方等式和方程之间的关系吗?
例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)。
师:同学们的图非常形象地表示出了方程和等式之间的关系,
1、这些图你能用方程来表示吗?
师:这里还有一些有关我们学校的信息,谁来读一读。
3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)。
学了这堂课你有什么想说的吗?你有什么想对老师说的吗?
教案比的意义篇六
p.1、2,完成第3页的练一练和练习一的第1~5题。
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等。
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)。
说我们以前认识过哪些数?(自然数、小数、分数)。
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)。
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)。
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5。
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的.基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。
黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)。
这节课学生在课堂上的反应是热烈的,但在作业中,发现似是而非的错误较多。特别是在温度计上找零下几度,不是正好的刻度时,容易找错区间,需要加强指导。
教案比的意义篇七
本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。
这部分内容是在学生学过分数与除法的联系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比同除法、分数的关。
1、通过实物及学过的联系式等概括出比的意义,用讲授法讲解说明两个数的比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。
2、举例说明比值的求法,以以及比和除法的联系。
;常分米,款分米的红旗一面,投影仪一、复习引入。
1、出示红旗。
讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?
引导学生回答:
要表示红旗的长和宽的联系,可以求长是宽的几倍,或者宽是长的几分之几。
板书;3÷2=3/2……长是宽地3/2。
2÷3=2/3……宽是长到2/3。
二、探究新知。
1、导入新课。
板书:比。
1、)红旗长和宽的联系,也可以这样说:
长和宽的比是2比3,
宽和长的比是2比3。
2、)出示投影片:
“一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?”
求汽车路程和时间的比是:100比2。
4、)教师小结:两个数相除又叫做两个数的比。
3、教学比的读写法,各部分的名称及求比值的方法。
1、)比的写法:3比2记作3:2。
2比3记作2:3。
100比2记作100:2。
3、)比的各部分的名称:
3:2=3÷2=3/2。
||||。
前项比号后项比值。
4、)比值;。
比的前项除以后项所得的商,叫做比值。
说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。
比的后项不能0。
4、做教科书第62页上半部分的“做一做”的题目。
5、教学比与除法、分数的联系。
6、做教科书第61页下半部分的“做一做”的题目。
三、巩固练习:
1、做练习十七的第1题。
2、做练习十七的第2、3题。
四、课堂小结:
同学们,这节课我们学到了什么知识?如何求比值?
板书设计:
3、比。
比的各部分名称:3:2=3÷2=3/2。
||||。
前项比号后项比值。
比值:比的前项除以后项所得的商,叫做比值。
教案比的意义篇八
1、知识与能力。
2、生进一步理解整除的意义。
2、使学生知道约数、倍数的含义,以及它们之间的相互依存关系。
3、使学生知道研究约数和倍数时所说的数,一般指自然数。
教学重点:理解整数、约数和倍数的概念。
教学难点:整数、约数和倍数的联系。
教学过程:
1、师:谁能说说整数的含义?
出示:23÷7=3...26÷5=1.2。
15÷3=524÷2=12。
教师:这4个算式中,哪个算式中第一个数能被第二个数整除?
为什么前两个算式中的第一个数不能被第二个数整除?
让学生观察算式,说说式中被除数、除数和商各有什么特点?
教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?
让学生p49页的结语。
教师:a的约数还可以叫做什么?
让学生用两种说法说说:15÷3=5和24÷2=12。
教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
(1)被除数和除数必须是整数,而且除数不等于0。
(2)商必须是整数。
(3)商的后面没有余数。
师:以上三个条件,缺一不可。
2、区别“除尽”与“整除”
师:像6÷5=1.2这样的除法,一般说6能被5除尽。
被除数和除数。
商
整除。
都是整数,除数不等于0。
商是整数,而且没有余数。
除尽。
不一定是整数,除数不等于0。
商是有限小数,没有余数。
1、教学约数和倍数的意义。
在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)。
让学生看50页关于约数和倍数。
教师:两个数在什么情况下才能说有约数和倍数关系?(整除)。
能单独说一个数是约数或一个数是倍数吗?
“倍数和约数是相互依存的”是什么意思?
:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。
2、教学例1。
(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。
教师:15能被3整除吗?
教师指出:这里所说的数一般是指自然数,不包括0。
(2)“倍数”与“倍”的区别。
1、基本练习p51做一做。
1、独立完成练习十一的1、2、3题。
2、第四题。
教师:要判断哪些数是60的约数,只要看那哪些数能整除60。
要判断哪些数是6的倍数,就要看哪些数能被6整除。
教案比的意义篇九
1、理解比的意义,掌握比的读、写及各部分的名称。
2、理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。
理解比和分数、除法之间的关系。
1、播放“神舟”五号顺利升空课件。
播报:20xx年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。(出示两面国旗:两面国旗都是长15cm,宽10cm。)。
2、提问:我们可以怎样表示它们长和宽的关系呢?
(1)用比多比少的方法来表示:长比宽多5cm,宽比长少5cm。
(2)用倍数关系来表示:长是宽的3/2,宽是长的2/3。
3、导入新课:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)。
学习方式:独立自学、汇报交流。
1、同类量的比。
(2)自学课本第48页的内容。
(3)长和宽的比是15比10,宽和长的比10比15。
(4)指出:不论是长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,这样的两个比我们称为同类的比。
2、不同类量的比。
(1)出示数据,列式求飞船的速度:42252÷90。
(2)用比来表示路程和时间的关系。
提问:路程和时间的关系能不能用比来表示呢?应该怎样表示呢?(路程和时间的比是42252比90)。
(3)提问:路程和时间是不是同类的量?
(4)指出:两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。
3、概括比的意义:通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫做两个数的比”。
学习方式:独立自学、汇报交流。
学习任务。
1、自学课本第49页,思考:几比几怎样写、怎样读?比的各部分名称是什么?
2、汇报交流:15:10=15÷10=3/2。
前项比号后项比值。
3、比值。
(1)什么是比值?怎么求比值?
(2)比值可以怎样表示?(分数、小数、整数)。
(3)讨论:比值和比有什么联系和区别?
学习方式:小组讨论、汇报交流。
学习任务。
1、提问:比的前项、后项和比值分别相当于除法算式和分数中的什么?
区别:除法是一种运算,分数是一种数,比表示两个数的关系。
2、提问:比的后项可以是0吗?为什么?(比的后项不能为0,0没有意义。)。
1、完成课本第49页的“做一做”,集体订正。
2、完成第52页练习十一的第1题。
这节课我们一起研究了比,回顾一下你有什么收获。
教案比的意义篇十
教学目标:
1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的基本性质。
2、通过自主探究,掌握化简比的方法并会化简。
3、渗透事物是普遍联系的辨证唯物主义观点。
教学重难点:理解比的基本性质,推导化简比的方法正确化简比。
教法:引导探究。
教学过程:
一、导入:
1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。
2、提问:根据这些信息,你能提出什么数学问题?
板书课题:
二、探究新知:
1、学生按学习指南自学。
学习指南:根据题意可以怎样表示长和宽的关系?
2、汇报自学情况。
3、教师指导:
长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。
4、苹果有4个,梨有5个。
提问:苹果和梨的关系可以怎样说?
尽量找学困生回答。
5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。
6、学生举例。
请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。
学生互相讨论后,再指名回答。
7、指导学生自学教材后,说说比的含义。
3比23:2。
2比32:3。
100比2100:2。
两个数相除又叫两个数的比。
15:10=15÷10=3/2。
前项比号后项比值。
教师重点指导:
(2)比的后项为什么不能为0?
比分数除法的联系与区别。
三.课堂检测:
完成教材第44页“做一做”的第1、2题。
1.完成教材第47页练习十一的第1——3题。
四.小结:
谈一谈本节课的收获。
教案比的意义篇十一
(一)。
一、填空。
1、某校六年级一班有男生24人,女生25人。
(1)、男生人数与女生人数的比是(),比值是()。
(2)、女生人数与男生人数的比是(),比值是()。
(3)、女生人数与全班人数的比是(),比值是()。
(4)、全班人数与女生人数的比是(),比值是()。
2、小明3分钟走了240米,小杰5分钟走了350米。
(1)、小明与小杰行走时间的比是(),比值是()。
(2)、小明行走的路程与小杰的路程的比是(),比值是()。
(3)、小明行走路程与时间的比是(),比值是(),比值表示()。
(4)、小杰行走路程与时间的比是(),比值是(),比值表示()。
(5)、小明行走速度与小杰行走速度的比是()。
二、求比值。
5:2.52.8: : :
(二)。
一、填空。
1、男生人数是女生的,女生人数与男生人数的比是()。
2、甲数是乙数的2倍,乙数和甲数的比是()。
甲与乙的速度比是()。
4、甲比乙多3,甲是8,甲与乙两数的比是(),比值是()。
6、两个正方形的边长的比是1:3,它们的周长比是()。
7、甲乙两数的比是2:3,甲是两数之和的()。
8、一个直角三角形中的两个锐角的度数比是1:2,最小的一个锐角是()度。
二、判断。
1、比的前、后项可以是任意数。()。
2、5米比7米的比值是5:7。()。
3、一场球赛的比分是2:0,因此比的后项可以是0。()。
4、3:8可以写成,比值是2。
三、看图填比。
1、甲与乙的比是():()。
2、乙与甲的比是():()。
3、甲与甲乙两数和的比是():()。
4、乙与甲乙两数和的比是():()。
5、甲乙两数差与甲乙两数和的比是():()。
四、解决问题。
2、把10克盐放入100克水中,盐和水的比是多少?盐和盐水的比是多少?
3、一个直角三角形中,两个锐角的度数比是1:1,其中一条直角边长4厘米,
求这个直角三角形的面积。
教案比的意义篇十二
教学目标:
1、理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。
2、理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。
教学重点和难点:
掌握比的意义,建立比的概念,能准确地求出比值。
教学过程:
老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)。
导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。
(一)准备题。
(事先板书)口头列式解答。
1、一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?
2、一辆汽车,2小时行驶100千米,每小时行驶多少千米?
板书:1002=50(千米)。
师:观察上面的两道题,它们有什么共同特点?(都用除法)。
1、观察练习1。
问:32表示什么?(3是2的几倍。)。
谁和谁比?(长和宽比。)。
23表示什么?(2是3的几分之几。)。
谁和谁比?(宽和长比。)。
师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。
板书:长和宽的比是3比2。宽和长的比是2比3。
也就是说,32可以说成3比2,23也可以说成2比3。
提问:3分米、2分米都表示什么?(长度)。
师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。
2、观察练习2。
提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?
师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即100∶2可以说成100比2。)。
路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度。)。
3、归纳总结。
师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上比。)什么叫做比?(学生讨论后,老师归纳并板书。)。
板书:两个数相除又叫做这两个数的比。
4、练一练。(投影)。
(1)书法小组有男生6人,女生5人,男女生人数的比是()比(),女生人数和男生人数的比是()比()。
(2)小红3小时走11千米,小红所行路程和时间的比是()比(),这个比表示()。
提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)。
(三)比的写法和各部分名称。
师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)。
3比2记作3∶2。
2比3记作2∶3。
100比5记作100∶5。
∶叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。用比的前项除以比的后项,所得的商叫做比值。
提问:比的前后两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)。
比值可以是哪些数?(分数、小数、整数)。
练习:你会求比值吗?(板书)。
100∶2=1002=50。
(老师说明:求比值和解答应用题不同,不写单位名称。)。
(四)比、除法、分数之间的关系。
师:两个数相除又叫做两个数的比,比和除法到底有什么关系?
学生讨论,老师出示投影。
生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。
师:为什么要用相当于这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。
提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0。)那比的后项可以是零吗?(不可以)。
师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成。
成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。
提问:比和分数有什么关系?
生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)。
师:分数是一个数,所以比同分数也是相当于的关系。
(五)反馈练习。
1、第56页的做一做,学生动笔在本上做。
2、(投影)把下面的比写成分数形式。
3、选择答案。
航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是。
4、判断正误:(举反馈牌)。
(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的。
(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。
师:写比要注意比的顺序,前、后项不能颠倒。
(六)课堂总结。
(七)布置作业。
(略)。
教案比的意义篇十三
1、能应用正负数表示生活中具有相反意义的量。
2、能说出有理数的意义,能正确对有理数进行分类。
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
1课时。
一、快乐自学(8分钟)。
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上-号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
二、合作探究。
1、某地2月18日凌晨1点的温度是0℃,凌晨4点的温度是-2℃,哪个时刻温度低?
2、吐鲁番盆地艾丁湖湖面的海拔高度为-154m,海平面高度为0m,哪个地方低?
3、通常把水结冰时的温度规定为0℃,那么比水结冰时的温度低5℃应记作什么?
4、如果在东西向马路上,把向东走的路程记作正数,那么走-50m是什么意思?
5、粮库把运进的粮食吨数记作正数,在某星期的5天中,进出粮食的记录如下:
星期一二三四五。
说出该粮库在这个星期中粮食进出记录的实际意义。
6、有下列8个数:3.6,,-78,0,-0.37,9,-5.14,-1。其中正数有:
_______________________________,负数有:_______________________________。
三、小结:(3分钟)。
通过本节课的学习,你知道了什么?
四、达标训练。
必做题(2分钟)。
1、正数是____________0的数,负数就是在正数前面加上-号的数,负数__________0。__________________既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
2、把下列各数填在相应的横线上:
-14,2.8,45,,-0.25,0,,2.07,-7.1,181,,3。
选做题(8分钟)。
在书上完成p7b组习题1题,2题。
五、学后反思。
1、通过本节课的学习我知道了。
2、我还存在的疑问是:
3、我对老师的建议是:
教案比的意义篇十四
教学目标:
1、运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义。
2、感受比在生活中的广泛应用,提高解决问题的能力。
教学重点:
理解按一定的比来分配一个数量的意义。
教学难点:
根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地运用乘法求各部分量。
教学过程:
一、 谈话导入:
同学们,我们已经认识了比,那么比在生活中有什么用途呢?这节课我们就来探究一下比在生活中的应用。
二、 交流预习情况:
1、集体订对获取的数学信息及提出的问题。
师板书摘要:
信息:一筐橘子,分给大班和小班,已知大班30人,小班20人。
问题:怎么分合理?能不能按比分配?
2、小组交流解决问题的策略(要求小组每人发言)。
3、小组汇报:
方案一:大班30个,小班20个,分完为止;
方案二:大班3个,小班2个,分完为止;
方案三:大班30个,小班20个,剩下的平均分;
方案四:大班往小班去5人,然后平均分;
方案五:数清橘子总数,除以总人数,再用每人所分个数乘各班人数即各班所得;
方案六:将橘子平均分成5份,大班3份,小班2份;
……。
4、针对方案同学提出疑义,并作出更改;
在解决疑问中,明确和以前所学的平均分有所不同。
更改如:大班30个,小班20个,剩下的不能平均分,要按3:2分才合理;
5、比较发现合理方案的共同点:不管怎么分,都要保证最终两个班分到的橘子数量的比要和两班的人数比相等。
三、尝试解决问题:如果共有140个橘子,该怎么分?
同桌交流后列式解决,指生上堂板演并讲解解题思路:
解法一:30:20=3:2 3+2=5 140÷5=28(个)。
大班:28×3=84(个) 小班:28×2=56(个)。
解法二:30:20=3:2 3+2=5 。
大班:140×=84(个) 小班:140×=56(个)。
四、师生总结解题方法。
今天遇到的问题不是平均分,而是按一定的比进行分配的问题,我们是把按比分配的问题转化成了以前的平均分问题,只是要按比所表示的份数平均分。
思路:已知整体,按比把它分成两部分或几部分,求各部分。
板书:总数量×=各部分的数量。
五、巩固练习p55试一试,练一练1题。
独立完成,集体订正。
六、 小结(学生小结,师生补充)。
板书设计:
总数量×=各部分的数量。
教案比的意义篇十五
1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的'基本性质。
2、通过自主探究,掌握化简比的方法并会化简。
3、渗透事物是普遍联系的辨证唯物主义观点。
理解比的基本性质,推导化简比的方法正确化简比。
引导探究。
1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。
2、提问:根据这些信息,你能提出什么数学问题?
板书课题:
1、学生按学习指南自学。
学习指南:根据题意可以怎样表示长和宽的关系?
2、汇报自学情况。
3、教师指导:
长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。
4、苹果有4个,梨有5个。
提问:苹果和梨的关系可以怎样说?
尽量找学困生回答。
5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。
6、学生举例。
请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。
学生互相讨论后,再指名回答。
7、指导学生自学教材后,说说比的含义。
3比23:2。
2比32:3。
100比2100:2。
两个数相除又叫两个数的比。
比的各部分名称。
15:10=15÷10=3/2。
前项比号后项比值。
教师重点指导:
(2)比的后项为什么不能为0?
比分数除法的联系与区别。
1、完成教材第44页“做一做”的第1、2题。
2、完成教材第47页练习十一的第1——3题。
谈一谈本节课的收获。
教案比的意义篇十六
1 .使学生进一步理解并掌握分数的意义。
2 .知道一个物体、一个计量单位、一个整体都可以用单位“1 ”表示。
3 .引导学生学会抽象概括,培养初步的逻辑思维能力。
1 .理解和掌握分数的意义。
2 .理解单位“1 ”。
3 .突破一个整体的教学。
正方形纸片
一、创设情境。
1 .测量。
师生合作测量黑板的长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)
2.计算。
教师让学生把一个苹果平均分给两个同学,每人分得饼的个数怎样来表示? 它结果不能用整数来表示,这样就产生了分数。
3 .讲述。
在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的'数――分数来表示,这样就产生了新的数―分数。今天,我们就来学习“分数的意义”。
二、教学实施
1、出示课件
说说每个图下面的分数是:
(1)把什么看做一个整体?
(2)平均分成了几份?
(3)表示这样的几份?
2、小组共同合作交流
1.出示4个苹果,6只熊猫能否平均分成若干份,要平均分,把什么看作一个整体?
2.结合小组汇报出示课件,展示结果
3、概括总结。
老师:刚才同学们在表示 的过程中,有什么发现吗?
学生甲:都是把物体平均分成几 份,表示这样的一份。
学生乙:我发现有的是把1 个图形平均分,有的是把4 个苹果、6 只熊猫平均分,还有的是把1 米平均分。
老师:一个图形比较好理解,我们把它称为一个物体,那么4根香蕉8个面包是由许多单个物体组成的,我们称作一些物体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1 来表示,通常把它叫做单位“1”。
(3)举例。
老师:对于这个整体,你还能想出其他的例子吗?
学生:这个整体还可以是一个苹果、一盒粉笔、一个班级的学生人数、全校学生数、全中国人口、全世界人口等。
3、(1) 概括意义。
学生试说,教师板书。
板书:把单位“ 1 ”平均分成若干份,表示这样一份或几份的数,叫分数。 强调必须是平均分。
揭示课题:分数的意义。
4、巩固练习
课本62页做一做,填在书上,学生汇报
5.学习分数单位。
(1)提出问题:“我们学过的整数和小数,它们都有计数单位,分数有没有计数单位呢?”让学生自学课本,找出分数单位的定义,并能举出例子。
(2)说一说课本62页做一做各分数的分数单位,它们分别有几个这样的分数单位。
(3)分数单位与哪个数有关?
让学生观察分数单位,从中发现“分母是几,分数单位就是几分之一”。
三、巩固练习
出示课件
四、、总结
1、想一想,这堂课上你学到了什么?
板书设计
分数的意义
一个物体
一个整体单位“1” 平均分 若干份(一份)
一些物体分数单位
教案比的意义篇十七
城南小学电子教案(数学)。
编写者。
执教者:
执教时间:年月日(第周)。
课题。
比和比例。
第课时。
教学内容。
教学目标。
1、理解比的意义,了解比的各部分名称;
2、理解比值的概念,能正确地求出比值;
教学重点。
教学难点。
沟通比和除法的关系。
教学准备。
教
学
过
程
一、复习导入:
2、一辆汽车3小时行驶180千米,每小时行多少千米?
导入:两个数进行比较,除了用除法算以外,在生产实践与生活中还有一种新的比较方法,这就是“比”,那么比的意义是什么?比的读法和写法怎样?比的各部分名称叫什么?这就是本节课我们要学习研究的内容。(揭题)。
二、展开:
比4,女生人数和男生人数的比是4比5;汽车每小时行60千米,也可说成汽车行驶路程和所用时间的比是18比3。→两个数相除,又叫两个数的比。
2、学课本,思考:比的读法、写法、比各部分名称,什么叫比值?如何求比值?
修改意见。
教
学
过
程
3、班级交流,落实上述知识点。
4、完成试一试1、2。
三、完成练一练1、2、5;
练一练4同上。
四、作业:《作业本》。
教
后
反
思
【本文地址:http://www.xuefen.com.cn/zuowen/17697962.html】